INFORME ANUAL 2014 CONDICIONADO AMBIENTAL

PLANTA DE TRATAMIENTO

DE

RESIDUOS SÓLIDOS URBANOS

Y

VERTEDERO

DE VALLADOLID

Titular de las Instalaciones:

JUNTA DE CASTILLA Y LEÓN REGISTRO ÚNICO C. AGRICULTURA Y G. C. FOMENTO Y MEDIO AMBIENTE

EXCMO. AYUNTAMIENTO DE VALLADOLIDatrada Nº. 20151680002123 266622015 12:56:52

Servicio de Limpieza

Ayuntamiento de Valladolid

Empresas explotadoras:

UTE PLANTA DE TRATAMIENTO DE VALLADOLID

ZARZUELA

VERTEDERO DE RESIDUOS NO PELIGROSOS DE VALLADOLID

Att: Servicio Territorial de Medio Ambiente de Valladolid

FEBRERO 2015

INFORME ANUAL 2014 CONDICIONADO AMBIENTAL

PLANTA DE TRATAMIENTO

DE

RESIDUOS SÓLIDOS URBANOS

Y

VERTEDERO

DE VALLADOLID

Titular de las Instalaciones:

EXCMO. AYUNTAMIENTO DE VALLADOLID. Servicio de Limpieza

Empresas explotadoras:

UTE PLANTA DE TRATAMIENTO DE VALLADOLID

VERTEDERO DE RESIDUOS NO PELIGROSOS DE VALLADOLID

Att: Servicio Territorial de Medio Ambiente de Valladolid

FEBRERO 2015

Índice

1.	ANT	ECEDENTES	Pág. 1
2.	_	DRME PLAN VIGILANCIA PLANTA DE UPERACIÓN Y COMPOSTAJEDE VALLADOLID	Pág. 2
	2.1.	INTRODUCCIÓN	Pág. 4
	2.2.	CODIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS	Pág. 5
	2.3.	IDENTIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS	Pág. 7
	2.4.	CALENDARIO DE VIGILANCIA AMBIENTAL PLANTA DE TRATAMIENTO DE VALLADOLID	Pág. 9
	2.5	PARAMETROS DE MEDICIÓN	Pág. 10
	2.6	INFORMES PLAN DE VIGILANCIA AMBIENTAL PLANTA DE TRATAMIENTO Y COMPOSTAJE	Pág. 11
	2.6.	1. PVP1 – Chimenea Motor de Cogeneración	Pág. 11
	2.6.2	2. PVP2–- Chimenea Caldera Biogás	Pág. 39
	2.6.	3. PVP3 – Filtro de mangas Área de Afino	Pág. 39
	2.6.4	4. PVP4 – Emisiones Sonoras	Pág. 63
	2.6.	5. PVP5 – Compost	Pág. 64
	2.6.0	6. PVP6 – Agua Recirculada Proceso de Compostaje	Pág. 73
3.		DRMES DESARROLLO PLAN VIGILANCIA TEDERO DE RESIDUOS NO PELIGROSOS	Pág. 78
	3.1.	INTRODUCCIÓN	Pág. 80
	3.2.	CODIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS	Pág. 81
	3.3.	IDENTIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS	Pág. 83
Inf	<u>orme</u> A	nual Condicionado Ambiental 2014	

		CALENDARIO DE VIGILANCIA AMBIENTAL	D' 05
	3.5.	VERTEDERO DE VALLADOLID PARAMETROS DE MEDICIÓN	•
	5.5.	PARAINETROS DE INIEDICION	Puy. 60
	3.6.	INFORMES PLAN DE VIGILANCIA AMBIENTAL	- /
		VERTEDERO DE RESIDUOS NO PELIGROSOS	Pág. 88
	3.6.1	. PVV1 – Datos Meteorológicos	Pág. 88
	3.6.2	2. PVV2 – Chimenea 1	Pág. 102
	3.6.3	3. PVV3 –Chimenea 2	Pág. 102
	3.6.4	1. PVV4 – Chimenea 3	Pág. 102
	3.6.5	5. PVV5 – Chimenea 4	Pág. 102
	3.6.6	5. PVV6 – Emisiones Sonoras	Pág. 104
	3.6.7	7. PVV7 – Medición Inmisiones	Pág. 105
	3.6.8	B PVV8 – Aguas Superficiales Aguas Abajo	Pág. 129
	3.6.9	PVV9 – Aguas Subterráneas Aguas Arriba	Pág. 154
	3.6.1	0. PVV10 – Aguas Subterráneas Aguas Abajo	Pág. 159
	3.6.1	1. PVV11 – Lixiviados	Pág. 184
	3.6.1	2. PVV12 – Control Topográfico	Pág. 194
		RME PRODUCCIÓN DE RESIDUOS PELIGROSOS	_
5.	INFO ENTF EN P	RME PRODUCCIÓN DE RESIDUOS PELIGROSOS RME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS ALLADOLID	Pág. 203
5. 6.	INFO ENTE EN P DE V	RME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS	Pág. 203 Pág. 205
5. 6. 7.	INFO ENTE EN P DE V	RME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS ALLADOLID	Pág. 203 Pág. 205
5. 6. 7.	INFO ENTE EN PL DE VI OPEFINCIL	RME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS ALLADOLID	Pág. 203 Pág. 205 Pág. 208
5. 6. 7.	INFO ENTE EN P DE V OPEE INCIL APRO GEST	RME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS ALLADOLID	Pág. 203 Pág. 205 Pág. 208 Pág. 209
5. 6. 7. 9.	INFO ENTE EN PE DE VE OPEE INCIL APRO GEST 5.2 R	RME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS ALLADOLID	Pág. 203Pág. 205Pág. 208Pág. 209Pág. 210
5. 6. 7. 8. 10	INFO ENTE EN P DE V OPEF INCIL APRO GEST ACRE 5.2 R	RAME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS RADAS Y SALIDAS DE MATERIAL TRATADO LANTA DE TRATAMIENTO DE RESIDUOS ALLADOLID	Pág. 203Pág. 205Pág. 208Pág. 209Pág. 210Pág. 211

1. ANTECEDENTES.

De acuerdo a la ORDEN DE 17 DE DICIEMBRE DE 2008 DE LA CONSEJERÍA DE MEDIO AMBIENTE POR LA QUE SE CONCEDE AUTORIZACIÓN AMBIENTAL AL EXCMO. AYUNTAMIENTO DE VALLADOLID PARA PLANTA DE RECUPERACIÓN Y COMPOSTAJE DE RESIDUOS URBANOS Y VERTEDERO DE RESIDUOS NO PELIGROSOS UBICADOS EN EL TÉRMINO MUNICIPAL DE VALLADOLID, se procede a desarrollar el Informe Anual para el año 2014, a presentar al Servicio Territorial de Medio Ambiente de Valladolid.

2. INFORMES DESARROLLO PLAN VIGILANCIA PLANTA DE RECUPERACIÓN Y COMPOSTAJE DE VALLADOLID.

A continuación se muestra el Plan de Vigilancia de la Planta de Tratamiento, Recuperación y Compostaje de Valladolid.

PLAN DE VIGILANCIA AMBIENTAL

PLANTA DE TRATAMIENTO DE RESIDUOS SÓLIDOS URBANOS DE VALLADOLID

UTE PLANTA DE TRATAMIENTO DE VALLADOLID

AÑO 2014

2.1. INTRODUCCIÓN

El presente informe recoge todos los aspectos que afectan al Plan de Vigilancia Ambiental, recogidos en la orden de 17 de Diciembre de 2008 de la Consejería de Medio Ambiente por la que se concede autorización ambiental al Excmo. Ayuntamiento de Valladolid para planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid.

.

En dichos planes se detallan los distintos parámetros a medir así como la ubicación de los puntos de medición y control para cada uno de estos parámetros, así como hojas de registro de los mismos, cronogramas con la planificación de las mediciones a realizar, etc.

2.2. CODIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS

En ambos planes de vigilancia se ha seguido una codificación a la hora de identificar el punto y característica que se debe analizar.

Esta codificación consta de cuatro términos:

- El primer termino, identifica el punto a medir para su localización en el plano. Indicando si pertenece a la planta o al vertedero. Siendo los siguientes:
 - PVP1....6: puntos pertenecientes a la planta.
 - PVV1....12: puntos pertenecientes al vertedero.
- El segundo término indica la naturaleza al cual pertenece la muestra a tomar. Siendo los siguientes:

• ATM: Atmósfera

• EFL: Efluente

• TOP: Control Topográfico.

• COM: Compost.

• ARC: Agua recirculada en proceso Compost.

- El tercer término indica el aspecto del punto a medir. Siendo los siguientes:

• EMI: Emisiones.

• INM: Inmisiones.

DAT: Datos Meteorológicos.

LIX: Lixiviados

• SUPAR: Aguas Superficiales Arriba.

SUPAB: Aguas Superficiales Abajo.

• SUBAR: Aguas Subterráneas Arriba.

• SUBAB: Aguas Subterráneas Abajo.

- El cuarto término indica el número de foco dentro de esa subcategoría. Siendo los siguientes términos.
 - F1: Chimenea correspondiente al motor de cogeneración de biogás.
 - F3: Caldera de Biogás
 - F4: Filtro de mangas.
 - RUI: Control de ruido.
 - CHIM1: Chimenea nº1.
 - CHIM2: Chimenea nº2.
 - CHIM3: Chimenea nº3.
 - CHIM4: Chimenea nº4.

Para comprender esta explicación se partirá del siguiente ejemplo.

PVP1/ATM/EMI/F1

Punto de Vigilancia de la Planta número 1, correspondiente a la atmósfera, emisión del Foco 1.

2.3. IDENTIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS

A continuación en la siguiente tabla, se muestra la identificación, el código, la descripción y la frecuencia de los condicionantes de la Autorización Ambiental para la planta de tratamiento y compostaje de Valladolid:

Punto	Código	Descripción	Frecuencia	
PVP1	PVP1/ATM/EMI/F1	Chimenea Motor de Cogeneración	Anual	
PVP2	PVP2/ATM/EMI/F3	Chimenea Caldera de Biogás	Anual	
PVP3	PVP3/ATM/EMI/F4	Filtro de Mangas área de Afino	Anual	
PVP4	PVP4/ATM/EMI/RUI	Punto Medición Emisiones sonoras	-	
PVP5	PVP5/COM	Compost	Trimestral	
PVP6	PVP6/ARC	Agua recirculada en proceso de Compostaje	Trimestral	

La localización de los puntos se muestra en la siguiente vista general de la planta.

Vista general de la Planta de Tratamiento de RSU de Valladolid.

2.4. CALENDARIO DE VIGILANCIA AMBIENTAL PLANTA DE TRATAMIENTO DE VALLADOLID.

AÑO 2014

				Enero	Febrero	Marzo	Abril	Мауо	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
PVP1	PVP1/ATM/EMI/F1	Chimenea Motor de Cogeneración	ANUAL								X				
PVP2	PVP2/ATM/EMI/F3	Chimenea Caldera de Biogás	ANUAL								х				
PVP3	PVP3/ATM/EMI/F4	Filtro de Mangas área de Afino	ANUAL			х									х
PVP4	PVP4/ATM/EMI/RUI	Emisiones sonoras	-												
PVP5	PVP5/COM	Compost	TRIMESTRAL		х			х			х			х	
PVP6	PVP6/ARC	Agua recirculada en proceso de Compostaje	TRIMESTRAL		х			х			х			х	

2.5 PARAMETROS DE MEDICIÓN.

Parámetros a medir en cada punto de vigilancia, de acuerdo a la Autorización Ambiental para Planta de Tratamiento de RSU de Valladolid

Punto de Vigilancia		Parámetros Analizados							
PVP1	SO2 (mg/m3)	NOx (medidos como NO2) (mg/m3)	CO (mg/m3)	COT (mg/m3)		HCl ng/m3)	SH2 (mg/m3)	Partículas (mg/m3)	Opacidad (Escala Bacharach)
PVP2	SO2 (mg/m3)	NOx (medidos como NO2) (mg/m3)	CO (mg/m3)	Partícu (mg/m					
PVP3	Partículas (mg/m3)								
PVP4	Ruido dB(A)								
PVP5	Limites establecidos en R.D. 824- 2005	Cadmio (Cd) (mg/Kg.)	Mercurio (Hg) (mg/Kg.)	Zinc (Zn) (mg/Kg.)	Cobre (Cu) Plomo (F (mg/Kg.) (mg/Kg			Cromo (Cr) (mg/Kg.)	Cromo Hexavalente (Cr+6) (mg/Kg.)
	Salmonella	Escherichia coli							
PVP6	Cadmio (Cd) (mg/Kg.)	Mercurio (Hg) (mg/Kg.)	Zinc (Zn) (mg/Kg.)	Cobre (Cu) (mg/Kg.)	Plomo (Pb) (mg/Kg.)	Níquel (N (mg/Kg.		Cromo Hexavalente (Cr+6) (mg/Kg.)	

2.6. INFORMES PLAN DE VIGILANCIA AMBIENTAL PLANTA DE TRATAMIENTO Y COMPOSTAJE

2.6.1. PVP1 – Chimenea Motor de Cogeneración.

El informe correspondiente con este punto de vigilancia ha sido realizado por la empresa ECA, grupo Bureau Veritas, siendo Organismo de Control con numero de acreditación Nº01/EI098.

Las mediciones realizadas en este punto de vigilancia, se encuentran en el informe con número de Expediente:

Nº: 47-47-M01-2-005960

El informe se muestra a continuación.

Informe nº: 47/47/M01/2/005960 Hoja 1 de 27

ORGANISMO DE CONTROL AUTORIZADO ENTIDAD DE INSPECCIÓN acreditada por ENAC con acreditación Nº 01/E1098

creditación N° 01/E1098

Delegación de CASTILLA Y LEÓN (Valladolid)

Calle Magnesio n°2 Edificio Magnesio 2ª planta.

CP 47012 Fax 983-212580 Telf 983-297555

ESTUDIO DE EMISIÓN DE CONTAMINANTES A LA ATMÓSFERA CORRESPONDIENTE A LA EMPRESA UTE PLANTA DE TRATAMIENTO SITUADA EN VALLADOLID.

UTE PLANTA DE TRATAMIENTO DE VALLADOLID Ctra. N-601, km 198 47080 - Valladolid

Informe n°: 47/47/M01/2/005960 Fecha: 2 de octubre de 2014

Informe Anual Condicionado Ambiental 2014

Informe nº: 47/47/M01/2/005960 Hoja 2 de 27

INDICE

- 1. ANTECEDENTES
- 2. OBJETO
- 3. DATOS GENERALES DE LA EMPRESA
- 4. DATOS GENERALES DEL ESTABLECIMIENTO
- 5. DATOS DE LA ACTIVIDAD
- 6. DATOS DEL MUESTREO
- 7. OBSERVACIONES Y COMENTARIOS
- 8. ANEXOS

Informe nº: 47/47/M01/2/005960 Hoja 3 de 27

1. ANTECEDENTES

A petición de la empresa UTE PLANTA DE TRATAMIENTO DE VALLADOLID, ECA, Entidad Colaboradora de la Administración, S.L.U. ha realizado las inspecciones correspondientes a las medidas de emisión de contaminantes a la atmósfera correspondientes a los focos siguientes:

Foco No	Nº Libro de registro	Descripción
F1		Motor de cogeneración de biogás

2. OBJETO

El objeto del presente informe es realizar las inspecciones reglamentarias periódicas establecidas en la ORDEN FYM/362/2014, de 30 de abril, por la que se declara que procede iniciar la actividad en la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, titularidad del Ayuntamiento de Valladolid y se modifica la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente, por la que se concede Autorización Ambiental a dicha instalación.

La inspección se realiza sobre los parámetros: partículas, HCl, SH_2 , NO_x , SO_2 , CO, opacidad y COT evaluándose su conformidad contra los valores límites establecidos.

2.1. Motivo del expediente

Esta medida de emisión de contaminantes en la atmósfera se ha realizado para hacer una inspección reglamentaria periódica en UTE PLANTA DE TRATAMIENTO DE VALLADOLID en la planta de Valladolid.

X	Inspección reglamentaria periódica		
	Inspección voluntaria/no acreditada		
	Plan de vigilancia		
	PDG		
	Repetición de medidas	Repetición de medidas	
X	Autorización Ambiental (AA)		

3. DATOS GENERALES DE LA EMPRESA

NOMBRE	UTE PLANTA DE TRATAMIENTO DE VALLADOILD
DOMICILIO SOCIAL	Ctra. Nac. 601, Km. 198. 47080 Valladolid
CIF	U47441605
TELÉFONO	983 35 85 88

Informe nº: 47/47/M01/2/005960 Hoja 4 de 27

4. DATOS GENERALES DEL ESTABLECIMIENTO

NIRI	
DOMICILIO PLANTA	Ctra. N. 601, Km. 198. 47080 Valladolid
PERSONA DE CONTACTO	Jorge Mateo
ACTIVIDAD PRINCIPAL DE LA EMPRESA	Planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos
GRUPO C.A.P.C.A	B.09 04 01 02 — Vertederos de residuos industriales peligrosos o no peligrosos, de residuos biodegradables así como vertederos no incluidos en le epígrafe anterior. B.09 04 01 05 — Combustión con valorización energética de biogás no incluidos en le apartado anterior B.09 10 05 01 — Planta de producción de compost
HORAS DE FUNCIONAMIENTO	8 horas/día. 2920 horas/año

5. DATOS DE LA ACTIVIDAD

Los volúmenes de producción y materias primas utilizadas son los siguientes:

5.1. Consumo de materias primas

Materias primas	Consumo anual*
Residuos materia orgánica	196.064 t
*Datos anteriores a 2012	1200 MW/24/10 MW20 44/1

5.2. Volúmenes de producción

PRODUCTOS	Producción*
Compost	5.573 t
*Deter enteriores a 2012	

5.3. Descripción resumida o esquematizada de los procesos de fabricación y focos de emisión asociados

El tratamiento que se realiza en el Centro de Tratamiento de Residuos consiste en:

<u>-Compostaje</u>. Una vez separada la materia orgánica pasará mediante cinta transportadora a la instalación de compostaje. La materia orgánica procede de las basuras urbanas, de los residuos para los que se solicita autorización y de la fracción sólida de la planta de mecanización. En los túneles de maduración se impulsa aire que es recirculado. El aire sobrante se inyecta en un biofiltro de madera de pino para su depuración.

Posteriormente, el material procedente de los túneles de maduración, considerado como compost bruto, es depurado para extraer impurezas como piedras, vidrio, etc. Este proceso se lleva a cabo mediante un sistema de doble cribado formado por trómeles de diferentes mallas y separación densimétrica final.

Finalmente, el compost obtenido pasa a la zona de acopio.

Los lixiviados generados en los túneles de maduración son recogidos en una cámara inferior y recirculados a los túneles con el fin de mantener la humedad, entre un 40-65%, de la masa en proceso de compostaje.

Informe nº: 47/47/M01/2/005960 Hoja 5 de 27

-Metanización: es una digestión en depósitos cerrados sin aireación debido a la presencia de bacterias anaerobias que digieren la materia orgánica. Los residuos que pasan a digestión deben haber sufrido con anterioridad a su entrada en el digestor un pretratamiento consistente en la homogeneización, un desmenuzamiento, eliminación de metales férricos, adición de agua y posterior calentamiento a temperaturas de 30-40°C o de 50-60°C.

De este proceso se obtienen dos fracciones: un efluente líquido que se dirige a los túneles de maduración del compost y un producto digerido que también tiene entrada en la planta de compostaje.

Del proceso de mecanización se obtiene biogás que es utilizado en el motor de cogeneración para el abastecimiento energético de la planta.

Los rechazos procedentes de la Planta de Tratamiento son destinados al Depósito de Rechazos.

5.4. Plano general de la planta indicando los focos emisores

Ver plano en anexo I

5.5. Relación de focos emisores dispersos que sean significativos con una descripción de sus características y del tiempo de funcionamiento

Las fuentes o focos principales de emisiones difusas son:

- La deposición de residuos en el vaso y posteriores degradaciones aerobia y anaerobia.
- Las balsas de lixiviados, dónde la contaminación difusa procede de los procesos anaerobios.
- La planta de clasificación y pretratamiento de residuos, los túneles de fermentación y la zona de acopio de compost
- El biofiltro, en donde se trata el aire procedente de los túneles de fermentación y de la planta de clasificación y pretratamiento de residuos.

5.6. Relación de los focos emisores vehiculados existentes

Los focos existentes en la factoría son los siguientes:

Nº Foco	Nº Libro registro	Descripción	Observaciones
F1		Chimenea del motor de cogeneración de biogás	
F3		Caldera de Biogás	
F4		Filtro de mangas (área afino de compost)	

Informe nº: 47/47/M01/2/005960 Hoja 6 de 27

5.7. Instalaciones de combustión industrial para la producción de energía

Las instalaciones de combustión industrial existentes en el UTE, Planta de Tratamiento de Valladolid son las siguientes:

	Nº libro				Consumo	
Nº foco	registro	Instalación	Combustible	Potencia cal. (Kw)	Máximo horario	Total anual
F1	000	Chimenea del motor de cogeneración de biogás	Biogás	650	1200	14964
F3	(55 75)	Caldera de Biogás	Biogás/Gasóleo	170	1000	1000

6. DATOS DEL MUESTREO

6.1. Identificación de los focos emisores muestreados

Los focos muestreados son los descritos en el capítulo 1. ANTECEDENTES de este informe, de las características siguientes:

Informe Anual Condicionado Ambiental 2014

Informe nº: 47/47/M01/2/005960 Hoja 8 de 27

6.2. Fecha y personal cualificado

Inspectores cualificados	Titulación	Fecha de la toma de muestras	Nº de foco
Víctor M. Vicente	Licenciado en Químicas	21 de agosto de 2014	F1
Francisco García	Técnico Superior Salud Ambiental	21 de agosto de 2014	F1

6.3. Condiciones técnicas de la producción durante el muestreo y representatividad de las medidas

Durante la realización de la toma de muestras las condiciones de producción del establecimiento eran los siguientes, según la información y evidencias facilitadas por los responsables de la instalación:

Nº foco	Proceso	Capacidad máxima de producción	Producción diaria
F1	Motor de cogeneración de biogás	650 Kw	Según demanda energética

Parámetro ensayado en foco F1	Nº de medida	Código muestreo	Condiciones operacionales de planta
Partículas, SO ₂ , CO, NOx HCl, H ₂ S, Opacidad	1	1701624/UF/M01/21.08.14/F1 PST 1 1701624/UF/M01/21.08.14/F1 HCl1 1701624/UF/M01/21.08.14/F1 H ₂ S 1 Gases M1 COT M1 Opacidad M1	520 Kw/h producción al 80%
	2	1701624/UF/M01/21.08.14/F1 PST 2 1701624/UF/M01/21.08.14/F1 HCl2 1701624/UF/M01/21.08.14/F1 H ₂ S 2 Gases M2 COT M2 Opacidad M2	520 Kw/h producción al 80%
	3	1701624/UF/M01/21.08.14/F1 PST 3 1701624/UF/M01/21.08.14/F1 HCl3 1701624/UF/M01/21.08.14/F1 H ₂ S 3 Gases M3 COT M3 Opacidad M3	520 Kw/h producción al 80%

6.4. Instalación para la toma de muestras

Los puntos de muestreo cumplen la normativa descrita en el anexo III de la Orden del MIE de 18 de octubre de 1976 (BOE 03.12.1976) sobre prevención y corrección de la contaminación industrial a la atmósfera, según las tablas siguientes:

Informe nº: 47/47/M01/2/005960 Hoja 9 de 27

FOCO №: F1 – Motor de cogeneración de biogás		PROCESO: generación eléctrica	
TIPO DE CHIMENEA		DIÁMETRO (m)	N° BOCAS
CHIMENEA CIRCULAR X		0,25	1
	P1	Ø 0,25 m	
Distancias y dimensio	nes relativas a los puntos de		es 0,25 m
Annuality in Michael A6 or of the			0,25 m
Diámetro del conducto de humos en el punto de toma de Altura total de la chimenea		inuestras	7,3 m
W0000000000000000000000000000000000000	toma de muestras manuale	s	5,20 m
Distancia de la última perturbaci	1994 - 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	4,60 m
Distancia entre el punto de toma de			0,60 m
Distancia perturbación anter		2242000 (2010) ** 40 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18,4 Ø - CUMPLE
Distancia perturbación poster	, -		2,4 Ø - CUMPLE
1E 2B1		1 - CUMPLE	
Número de orificios toma de mu	iestras manuales	1-COMPLE	202
Diámetro interior toma de mu		100 mm	
	estras manuales	et Canadacatatacan	
Diámetro interior toma de mue	estras manuales testras manuales	100 mm	
Diámetro interior toma de mu Longitud del cuello toma de mu	estras manuales nestras manuales eto a plataforma	100 mm 200 mm 1,10 m	
Diámetro interior toma de mue Longitud del cuello toma de mu Altura toma de muestras respec	estras manuales testras manuales to a plataforma toma muestras manuales	100 mm 200 mm 1,10 m	
Diámetro interior toma de mus Longitud del cuello toma de mu Altura toma de muestras respec Amplitud de plataforma frente a orificios	estras manuales testras manuales to a plataforma toma muestras manuales	100 mm 200 mm 1,10 m	
Diámetro interior toma de mue Longitud del cuello toma de mu Altura toma de muestras respec Amplitud de plataforma frente a orificios Área de plataforn	estras manuales testras manuales to a plataforma toma muestras manuales na	100 mm 200 mm 1,10 m 3,0 m 6,0 m ²	
Diámetro interior toma de mus Longitud del cuello toma de mu Altura toma de muestras respec Amplitud de plataforma frente a orificios Área de plataform Protección frente inter	estras manuales testras manuales to a plataforma toma muestras manuales na	100 mm 200 mm 1,10 m 3,0 m 6,0 m ² Interior	

Informe nº: 47/47/M01/2/005960 Hoja 10 de 27

6.5 Detalles de calidad y concentración de los gases utilizados

Fecha: 21 de agosto de 2014					
Parámetro	C ₃ H ₈	O ₂ +NO ₂	CO ₂ +CO+NO+SO ₂		
Gas cero utilizado	N ₂	N_2	N_2		
N° equipo ECA	15160	15160	15160		
Gas patrón utilizado	C ₃ H ₈ (99,40 ppm)	O ₂ (14,99%) NO ₂ (100,5 ppm)	CO ₂ (14,96%) CO (399,1 ppm) NO (205,7 ppm) SO ₂ (498 ppm)		
N° equipo ECA	16640	16689	16688		
Marca	Air Liquide	Air Liquide	Air Liquide		
Botella	9383899	692876	692770		
Certificado	1410/13A	ISO	ISO		

6.5.1 Detalle del ajuste / verificación realizados antes y después del muestreo.

CONTROL DE LA CALIDAD COT				
Día	21 de agosto de 2014			
Gas cero utilizado	N_2			
Nº equipo ECA	15160			
Gas patrón utilizado	Propano 99,40 ppm			
Nº equipo ECA	16640			
Marca	Air Liquide			
Botella	9383899			
Certificado	1410/13A			
Incertidumbre	±0,72 ppm			
Ajuste inicial cero	$0.057\mathrm{mgC/Nm^3}$			
Ajuste inicial patrón	160,6 mgC/Nm ³			
Estanqueidad	160,7 mgC/Nm ³			
Verificación de cero final	$0.027\mathrm{mgC/Nm^3}$			
Verificación patrón final	161,3 mgC/Nm ³			
Deriva de rango	1,27 mgC/Nm ³ < 2% gas de rango			

EQUIPO

Informe nº: 47/47/M01/2/005960 Hoja 11 de 27

CONTROL DE LA CALIDAD GASES DE COMBUSTIÓN						
Fecha: 21 de agosto de 2014						
Parámetro (gas)	O ₂	CO ₂	СО	NO	NO ₂	SO ₂
Verificación inicial cero	0,00	0,00	0,00	0,00	0,00	0,00
Verificación inicial patrón	15,01	14,90	400,0	207,0	99,0	492,0
Estan quei dad inicial	0,00	Ver O ₂	Ver O ₂	Ver O₂	Ver O₂	Ver O ₂
Estanqueidad final	0,00	Ver O₂	Ver O₂	Ver O₂	Ver O₂	Ver O ₂
Verificación final de cero	0,00	0,00	0,00	0,00	0,00	0,00
Verificación final de patrón	14,96	14,93	402,0	203,5	101	491,0
Validación verificaciones	Conforme	Conforme	Conforme	Conforme	Conform e	Conforme

6.5.2 Descripción y características de funcionamiento del equipo de medida (sólo para ensayos "in situ")

Nº 15808

ionización por combustión de	elo THERMOFID es un analizador portátil para la medida de COT a través de compuestos orgánicos con llama de hidrógeno. El sistema de muestreo completo mico para partículas, línea calefactada y el equipo THERMOFID.
, and the second se	CARACTERÍSTICAS DE FUNCIONAMIENTO
Parámetro	COT
Principio	Analizador con Detector de Ionización de Llama FID
Tiempo de respuesta	1 segundo
Límite de detección	0,001/0,01/0,1 mgC/Nm3
Falta de ajuste	1,0%
Deriva de cero	1,0% Lectura/24h
Deriva de patrón	1,0% Lectura/24h
Desviación estándar de repetibilidad en laboratorio en cero	≤0,4 mgC/Nm3
Desviación estándar de repetibilidad en laboratorio en patrón	≤0,4 mgC/Nm3
Pérdida de estanquidad	≤0,4 mgC/Nm3
Rango	0 – 20 mgC/Nm3
Desviación de linealidad	≤±4% rango

Informe nº: 47/47/M01/2/005960 Hoja 12 de 27

EQUIPO	15822
--------	-------

El equipo Testo modelo 350XL es un analizador portátil que integra la medición de emisiones de O₂, CO₂, CO, NOx y SO₂. El sistema de muestreo completo consta de sonda Testo con filtro cerámico para partículas, línea calefactada, con acondicionador de gases.

	CARACTERÍSTICAS DE FUNCIONAMIENTO							
Parámetro	O ₂	CO ₂	СО	NOx (NO+NO ₂)	SO ₂			
Principio	Célula electroquímica	IR	Célula electroquímica	Célula electroquímica	Célula electroquímica			
Tiempo de respuesta	≤60 segundos	≤60 segundos	≤60 segundos	≤60 segundos	≤60 segundos			
Rango	0 – 21%	0 – 25%	0 – 10000 ppm	0 – 3000 ppm NO 0 – 500 ppm NO ₂	0 – 5000 ppm			

6.5.3 Características del equipo de muestreo (métodos manuales)

Medida de ve	ocidad	
La medida de velocidad se realiza mediante tubo	o de pitot tipo S y manómetro diferencial	
Calibración dispositivo medida de velocidad	Certificado 93/5C/1/024029	
Calibración tubo de pitot	Certificado 93/5C/1/024544	
Características del equ	ipo de muestreo	
Diámetro boquilla 5, 6 mm		
Características filtro	Filtro de cuarzo de 4.7 mm	
	Certificado 93/5C/1/023475	
Calibración dispositivo de medida de volumen	Certificado: 93/5C/1/023980	
	Certificado: 93/5C/1/023988	
Town continue do filturación	Acondicionado a:	
Temperatura de filtración	Partículas: 160°C±5°C	
Tipo de borboteadores	Vástago recto	
Solución lavado partículas (UNE EN 13284-1)	H ₂ O destilada + acetona (2:1)	
Solución captadora HCl (UNE EN 1911)	Agua MiliQ	
Solución captadora de H ₂ S	Sulfato de Cadmio/Etanol/NaOH	

Informe Anual Condicionado Ambiental 2014

Informe nº: 47/47/M01/2/005960 Hoja 13 de 27

6.5.4 Perfil de Temperatura y Velocidad y Test de Homogeneidad

No se realiza Test de Homogeneidad debido a que el diámetro del foco es inferior a 0,35 m., correspondiendo por Norma un punto de muestreo

Con el objetivo de garantizar la representatividad del punto de toma de muestras, se ha procedido a medir la distribución de temperatura y velocidad en el conducto, obteniéndose los resultados resumidos en las siguientes tablas:

	Perfi	les de temperatura y ve	elocid ad		
		Fecha: 21/08/2014			
BOCA	PUNTO	Distancia (cm)	Temperatura (°C)	Velocidad (m/s)	
1	1	5,0	521,3	56,3	
1	2	20,0	521,9	55,7	
	Validación del p	lano de muestreo. Crito	erios de aceptación	X	
Ángulo de fluj	o de gas inferior a 15	° del eje	Conforme		
Ningú	n flujo local negativo		Conforme		
Presión d	iferencial mayor de 5	Pa	Conforme		
Cociente entre veloci	dad superior e inferio	r menor de 3:1	Conform	e	

Informe nº: 47/47/M01/2/005960 Hoja 14 de 27

6.5. Resultados de las mediciones y conformidad con la legislación

En el laboratorio físico-químico acreditado por ENAC con nº de identificación 109/LE446 se han realizado, en su caso, los análisis pertinentes de las muestras obtenidas, habiéndose obtenido los niveles de emisión de contaminantes en la atmósfera según se resumen en las tablas siguientes. Los informes con los resultados del análisis están a disposición del solicitante:

FOCO	F1 – MOTOR COGENERACIÓN		Medi	ción			
Fecha	21/08/2014	- 1	Com	bustión			
*	Parámetro	1 ² Medic	da	2² Medida	3ª Medida	Valor Límite	Unidades
Hora de la t	oma de muestras	12:0.	05	2:05 14:10	15:15		hora
Duración de	l muestreo	60		60	60	200	Min.
Test de fuga	s inicial			Conforme			
Test de fuga	s final			Conforme		2000	12.00
Temp er atur	a media de los gases	562,1	.5	560,53	565,28		°C
Diámetro ch	imenea			0,25			m
Velocidad n	redia de los gases	58,3	1	58,22	58,38	200	m/s
Caudal de g	ases	2771,	,0	2773,0	2765,0		Nm³/h
Porcentaje o	le O ₂	6,60)	6,66	6,35	200	%
Porcentaje o	le CO2 ^{*1}	12,4	8	12,46	12,83		%
	Concentración	855,4	15	794,92	924,42	1000	ppm
T	Concentración	1069,	32	993,65	1155,52		mg/Nm ³
Emisión de	Concentración 15% O ₂ Ref.	445,4	16	415,80	473,20	700	mg/Nm ³
	Carga	2,96	5	2,76	3,19		Kg/h
	Concentración	<10	18	<10	<10		ppm
T	Concentración	<28,	6	<28,6	<28,6		mg/Nm ³
Emisión de	Concentración 15% O ₂ Ref.	<11,8	37	<11,93	<11,67	300	mg/Nm ³
	Carga	<0,0	8	<0,08	<0,08		Kg/h
	Concentración	269,7	75	223,36	318,34		ppm
Emisión de l	NO. Concentración	553,0)2	457,85	653,28		mg/Nm ³
(medido como		230,3	8	191,59	267,53	450	mg/Nm ³
	Carga	1,53		1,27	1,81		Kg/h
	Opacidad	1		1	1	<2	Bacharach

Informe nº: 47/47/M01/2/005960 Hoja 15 de 27

FOCO F	1 – MOTOR COGENERACIÓN		Medición				
Fecha 2	1/08/2014		Partículas	+ HCl		v.	
	Parámetro	1ª Medic		2ª edida	3ª Medida	Valor Límite	Unidades
Hora de la tor	na de muestras	15:00) 10	6:15	17:30		hora
Duración del	muestreo	60		60	60		Min.
Test de fugas	inicial	<2		<2	<2		%
Test de fugas	final	<2		<2	<2		%
Temp eratura	media de los gases	560,9	9 50	65,2	561,6		° C
Diámetro chir	nenea),25	5000		m
Humedad		11,4	1	0,3	10,0		%
Velocidad me	dia de los gases	57,0	5	7,5	57,3		m/s
Caudal de gas	es	2668	3 2	710	2718		Nm³/h
Volumen de n	nuestra captado	1,22	1 1,	234	1,229		Nm ³
Isocinetismo		114,1	1 1.	13,6	112,8		%
Porcentaje de	O_2	6,57	6	,74	6,35		%
Porcentaje de	CO2 ^{*1}	12,50) 1:	2,43	12,83		%
Emisión de	Concentración	<1		<1	<1		mg/Nm ³
Emision de Partículas	Concentración 15% O2 Ref.	<1		<1	<1	50	mg/Nm ³
Faruculas	Carga	6,6 10)-4 8,8	3 10-4	6,6 10-4		Kg/h
	Concentración	<1,4	. <	1,4	<1,4		mg/Nm ³
Emisión de H	Cl Concentración 15% O ₂ Ref.	<1,4		1,4	<1,4	460	mg/Nm ³
	Carga	2,3 10	3,0	10-3	3,0 10-3		Kg/h

FOCO F1 – MOTOR COGENERACIÓN			Medición			
Fecha 21/	08/2014		SH ₂			
	Parámetro	1ª Medid	2 ^a la Medida	3ª Medida	Valor Límite	Unidades
Hora de la tom:	a de muestras	18:45	18:55	19:05	2002	hora
Duración del m	uestreo	5	5	5	200	Min.
Test de fugas in	icial	<2	<2	<2	2002	%
Test de fugas fi	nal	<2	<2	<2	2000	%
Temperatura m	edia de los gases	548,9	551,2	546,6	200	°C
Diámetro chime	en ea	7.	0,25		2000	m
Velocidad medi	a de los gases	57,0	57,0	57,0	2000	m/s
Caudal de gase	<u> </u>	2767	2767	2767	200	Nm³/h
Volumen de mu	estra captado	0,005	0,005	0,005	200	Nm ³
Porcentaje de C	02	6,46	6,48	6,45	2002	%
Porcentaje de C	CO2*1	12,60	12,59	12,61	2000	%
	Concentración	1,17	1,02	1,06	<u> </u>	mg/Nm ³
Emisión de SH	Concentración 15% O ₂ Ref.	0,48	0,42	0,44	10	mg/Nm ³
	Carga	3,2 10	2,9 10-3	3,0 10-3	2000	Kg/h

Informe nº: 47/47/M01/2/005960 Hoja 16 de 27

FOCO	F1 - I	MOTOR COGENERACIÓN	N	Medio	ción			
Fecha	21/08	/2014	(COT				
		Parámetro	1 ² Medid	la	2ª Medida	3ª Medida	Valor Límite	Unidades
Hora de la	a toma d	e mu estras	12:05	5	14:10	15:15		hora
Duración	del mue	streo	60		60	60		Min.
Test de fu	gas inici	al			Conforme			
Test de fu	gas final			Conforme				
Temp er at	ura med	ia de los gases	562,1.	5	560,53	565,28		℃
Humedad					10	•		%
Diámetro	chimene	ea .			0,25			m
Velocidad	media d	le los gases	58,31	1	58,22	58,38		m/s
Caudal de	gases		2771,	.0	2773,0	2765,0		Nm³/h
Porcentaj	e de O ₂	952	6,60		6,66	6,35		%
Porcentaj	e de CO	*1 2	12,48	3	12,46	12,83		%
		Concentración	282,4.	5	274,98	285,91		mgC/m ³
Emisión de COT Concentración		Concentración	313,8	3	305,54	317,68		mgC/Nm ³
Emision d	ie COI	Concentración 15% O ₂ Ref.	130,7	4	127,85	130,09	150	mgC/Nm ³
		Carga	0,87		0,85	0,88		KgC/h

Ensayo	Méto do	I.T. ECA	Tipo	Principio	Rango de operación	Incertidumbre de medida
СОТ	UNE-EN 12619:2000 UNE-EN 13526:2002	I.T. 714048	Analizador automático FID	Detección de Ionización por Ilama	2 - 12 mgC/Nm ³ 12 - 20 mgC/Nm ³ 20 - 120 mgC/Nm ³ 120 - 200 mgC/Nm ³	70.6% rel. 13.8% rel. 7.8% rel. 13.8% rel.
Partículas	UNE-EN 13284- 1:2002	I.T. 714050	Captación isocinética	Gravimetría	1,3 - <20,6 mg/Nm³ 20,6 - 296 mg/Nm³ >296 mg/Nm³	15.6% rel. 6.5% rel. 4.8% rel.
O_2	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	1.4 – 21 % v/v	1% v/v
CO ₂	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Cálculo/IRND	25% ∀/∀	1% v/v
CO	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	4 - 30 ppm 30 - <250 ppm 250 - <2000 ppm	8,4% rel. 9,0% rel 7,9% rel
NO	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	10 - <250 ppm 250 - 3000 ppm	22% rel. 7,9% rel
NO_2	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	10 - <30 ppm 30 - <50 ppm >50 ppm	11,0% rel. 8,8% rel 8,4% rel
SO ₂	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	10 - <250 ppm 250 - <500 ppm 500 - <1500 ppm 1500 - <3500 ppm >3500 ppm	9,1% rel. 7,8% rel 8,1% rel 8,2% rel 10,0%

Informe nº: 47/47/M01/2/005960 Hoja 17 de 27

6.6. Valoración de los resultados según normativa vigente

6.6.1. De acuerdo al contenido de la ORDEN FYM/362/2014, de 30 de abril, por la que se declara que procede iniciar la actividad en la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, titularidad del Ayuntamiento de Valladolid y se modifica la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente, por la que se concede Autorización Ambiental a dicha instalación, las disposiciones que lo modifican y la legislación aplicable que se indica se han obtenido los valores de la siguiente tabla:

FOCO		F1 – Mot	or cogeneración de biogás				
G 175	Concentració	n obtenida		Concentración	SUPERA		
Codificación muestra	Concentración	Media	— Unidades	límite según legislación	SI/NO		
1701624/UF/M01/21.08.14/F1 PST 1	<1						
1701624/UF/M01/21.08.14/F1 PST 2	<1	<1	mg/Nm^3	50	NO		
1701624/UF/M01/21.08.14/F1 PST 3	<1						
CO 1	445,46						
CO 2	415,80	444,82	mg/Nm^3	700	NO		
CO 3	473,20						
NO _x 1	230,38						
$NO_x 2$	191,59	229,83	mg/Nm^3	450	NO		
$NO_{x}3$	267,53		Solver				
SO ₂ 1	<11,87			300			
SO ₂ 2	<11,95	<11,83	mg/Nm^3		NO		
SO ₂ 3	<11,67						
COT 1	130,74						
COT 2	127,85	129,56	mgC/Nm ³	150	NO		
COT 3	130,09						
1701624/UF/M01/21.08.14/F1 HCl 1	<1,4						
1701624/UF/M01/21.08.14/F1 HCl 2	<1,4	<1,4	mg/Nm^3	460	NO		
1701624/UF/M01/21.08.14/F1 HCl 3	<1,4						
1701624/UF/M01/21.08.14/F1 H ₂ S 1	0,48						
1701624/UF/M01/21.08.14/F1 H₂S 2	0,42	0,45	mg/Nm^3	10	NO		
1701624/UF/M01/21.08.14/F1 H₂S 3	0,44						
Opacidad 1	1						
Opaci dad 2	1	1	Bacharach	<2	NO		
Opaci dad 3	1						

Informe nº: 47/47/M01/2/005960 Hoja 18 de 27

Los valores de los blancos se encuentran por debajo del 10% del valor límite de emisión.

Codificación muestra	Parámetro	Concentración blanco	Valor blanco(<10%VLE)
1701624/UF/M01/21.08.14/PST BLA	Partículas	<1,06	Conforme
1701624/UF/M01/21.08.14/BLA HCI	HCl	<0,29	Conforme
1701624/UF/M01/21.08.14/ BLA H₂S	H ₂ S	<1,47	No Conforme*

^{* &}lt;LC: Limite de Cuantificación

El valor del blanco de H₂S se considera no valorable, pues, a pesar de que no cumple con el criterio del 10% del VLE, es un valor inferior al LC, viéndose por los resultados obtenidos en las muestras que el volumen captado es suficientemente representativo para la cuantificación del contaminante, lo cual no afecta a la bondad de la inspección ni a la calidad de la medición. En el caso del resto de contaminantes, si bien también los blancos son <LC, este valor es muy inferior al 10%VLE.

Eficiencia del HCl

Contenido Contenedor 1	Contenido Contenedor 2	Eficiencia	
0,85 mg/Nm ³	<0,17 mg/Nm ³	No valorable*	

^{*}No se puede valorar la eficiencia de captación debido a que la concentración del 2° contenedor es inferior al Límite de Cuantificación del laboratorio.

6.6.2. Valoración de los resultados

6.6.2.1. Los valores de concentración obtenida, para el foco F1, para los contaminantes indicados, se encuentran por debajo de los límites legalmente admitidos en la legislación vigente indicada, y por tanto, la emisión del foco CUMPLE con la legislación vigente citada.

6.7. Parámetros de la legislación no medidos

Se ha determinado el valor de todos los parámetros regulados por la legislación aplicable.

6.8. Identificación de la posible exención del control de alguno de los focos detallados en el apartado 5.6.

Si hay exención:

Nº Foco	Nº Libro registro	Descripción	Ob servaciones
F3		Caldera de Biogás	Objeto de otro informe 47-47-M01-2-005458
F4		Filtro de mangas (área afino de compost)	Objeto de otro informe 47-47-M01-2-005458

Informe nº: 47/47/M01/2/005960 Hoja 19 de 27

7. OBSERVACIONES Y COMENTARIOS

7.1. La metodología a seguir ha sido la siguiente

Determinación	Basado en la Norma	Basado en la Instrucción Técnica de ECA	
Toma de muestras en emisiones fijas	UNE EN 15259	I.T. 714001	
Determinación de CO, CO $_{\mathfrak{p}}$ O $_{\mathfrak{p}}$ NOx, SO $_2$	ASTM D-6522-00	I.T. 714019	
Determinación de emisiones de COT	UNE-EN-12619	I.T. 714048	
Determinación de emisión de partículas	UNE-EN-13284-1	I.T. 714050	
Determinación de la humedad	UNE-EN 14790	I.T. 714085	
Determinación de HCl	UNE-EN 1911	I.T. 714042	
Determinación de H₂S	ICAS 701	I.T. 714057	

7.2. Equipos utilizados en la inspección

Equipo	Marca/Modelo	N° Equipo	Nº Certificado	Nº Serie
Contador de gases	ITRÓN GALLUS G4	15273	93/5C/1/023475	0310A138576902
Contador de gas	ITRÓN GALLUS G 1.6	15515	93/5C/1/023980	
Contador de gas	ITRÓN GALLUS G 1.6	15516	93/5C/1/02988	
Vacuómetro	WIKA	12532	93/5C/1/023486	
Vacuómetro	STI CONCEPT	15524	93/5C/1/024057	
Vacuómetro	STI CONCEPT	15525	93/5C/1/024058	
Termómetro	TECORA BRAVO BASIC	12533	93/5C/1/023485	
Termómetro/Termopar	TESTO	15519	93/5C/1/024001	
Termómetro/Termopar	TESTO	15521	93/5C/1/024002	
Analizador de gases cromatográfico	M&A – Thermo FID	15808	93/5C/1/025543 CI / 025537 VI	4996711
Muestreador isocinetico	TECORA	15349	93/5C/1/024529-24535	11240124P
Manometro	TCR TECORA FLOWTEST	15440	93/5C/1/024029	1119134ST
Termopar	TCR TECORA	15441	93/5C/1/024031	11452487
Termopar	Termopar sonda	16405	93/5C/1/022198	
Termopar	Termopar chimenea	16410	93/51/022203	
Tubo pitot	TCR TECORA	15359	93/5C/1/024544	1410
Analizador de gases de combustión	TESTO 350XL	15822	93/5C/1/024140	2228266
Termopar	TESTO 350	15823	93/5C/1/020376	
Todos los certifica	dos de calibración de los e	quipos utili:	zados están disponibles a petición	del solicitante

Informe nº: 47/47/M01/2/005960 Hoja 20 de 27

7.3. Observaciones

Se recuerda a UTE PLANTA DE TRATAMIENTO DE VALLADOLID que ha de realizar un control anual de los focos emisores a la atmósfera, tal y como contempla la ORDEN FYM/362/2014, de 30 de abril, por la que se declara que procede iniciar la actividad en la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, titularidad del Ayuntamiento de Valladolid y se modifica la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente, por la que se concede Autorización Ambiental a dicha instalación, y la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente por la que se concede Autorización Ambiental al Excmo. Ayuntamiento de Valladolid para la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid.

8. ANEXOS

Se adjuntan los anexos siguientes:

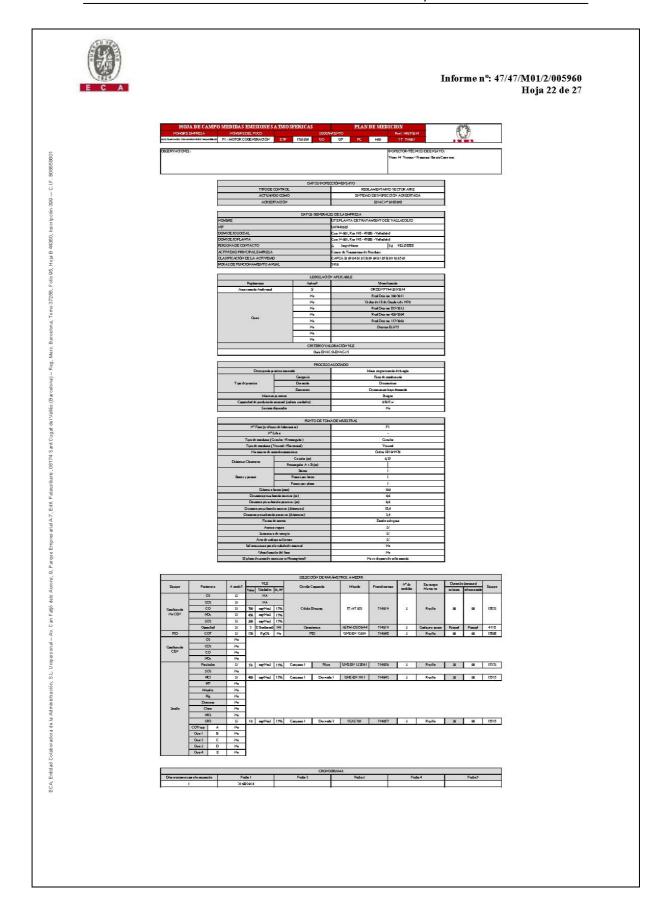
ANEXO I: Plan de medición y cronograma.

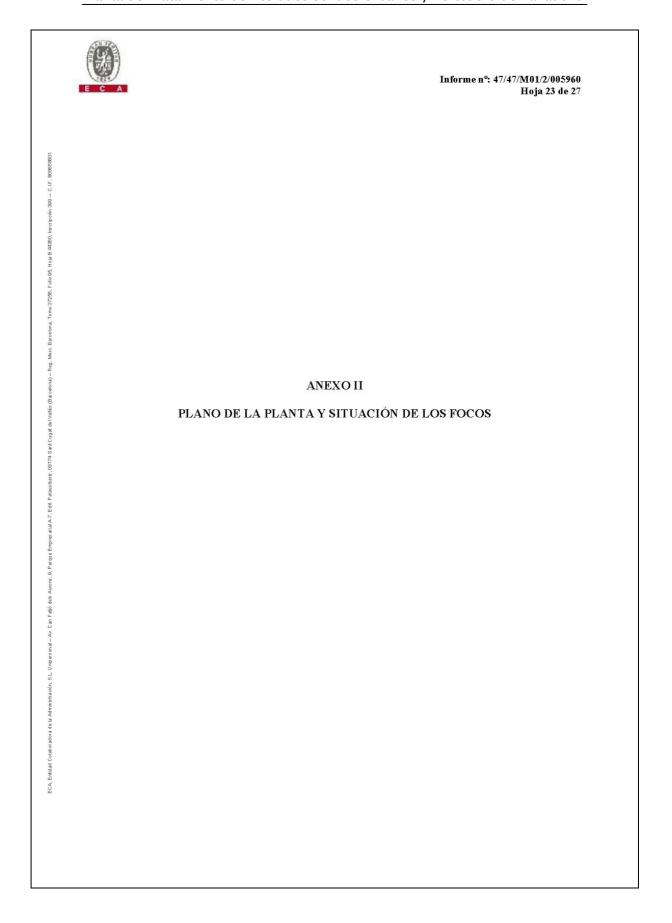
ANEXO II: Plano de la planta y situación de los focos.

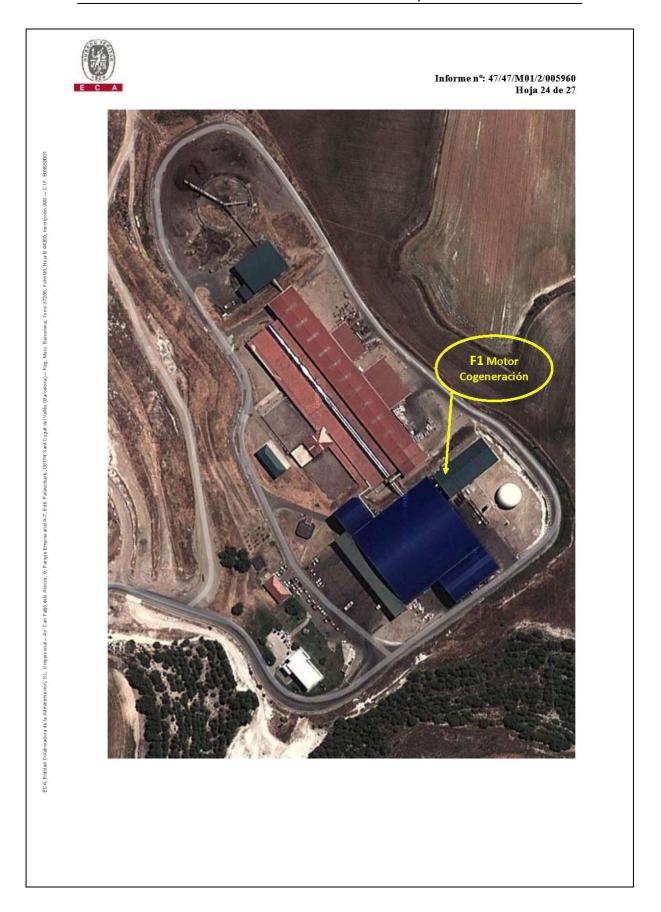
ANEXO III: Fórmulas de cálculo.

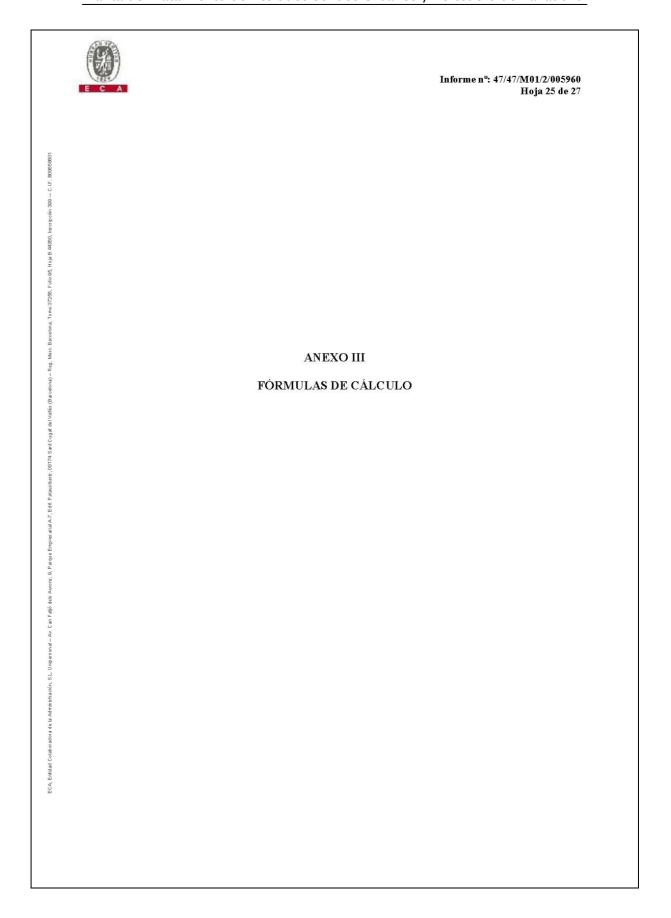
of l

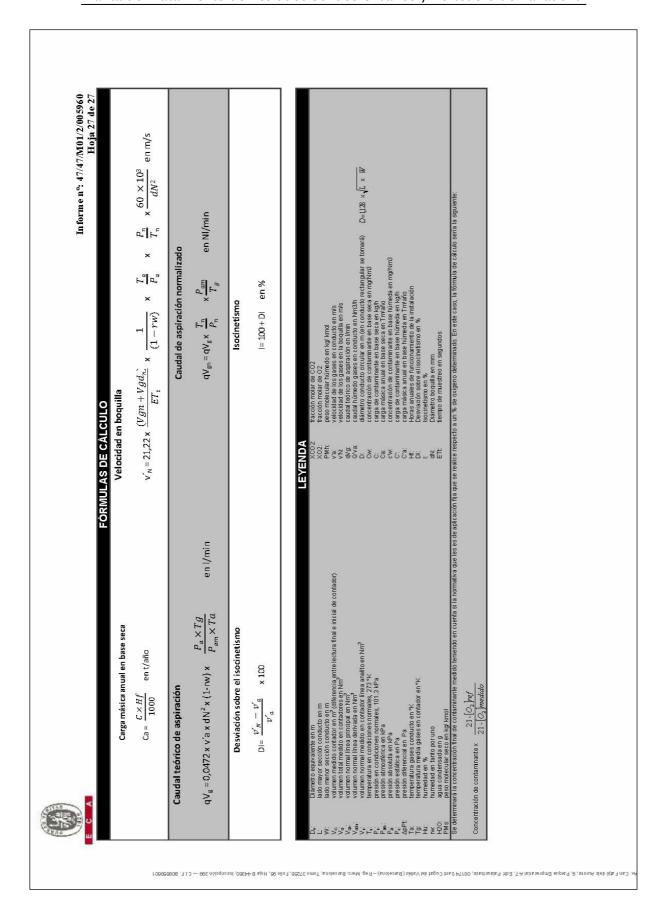
Víctor M. Vicente Inspector de Medio Ambiente Valladolid, 2 de octubre de 2014




V°B°


Jane June


Javier Santamarta Supervisor Técnico



Diámetro equivalente a efecto muestreo en chimenea rectángular Diámetro equivalente a efecto muestreo en chimenea rectángular $L+W$ en m. Humedad $H_u = \frac{2 \times L \times W}{(0.001245 \times H2O)}$ en $\%$ $w = \frac{Hu}{100}$ en tanto por uno Peso molecular Húmedo Presión absoluta en conducto Presión absoluta en conducto $Pa=Pam+\frac{Pe}{1000}$ en kPa Caudal húmedo en conducto $Q_{va}=2827 \times v \times x D^2$ en m^3/h Caudal normal seco en conducto $Q_{va}=2827 \times v \times x D^2$ en m^3/h Concentración en base húmeda y condiciones normales $Q_{va}=\frac{Cw}{(1-rw)}$ en mg/Nm³ $C'w=\frac{Cw}{(1-rw)}$ en mg/Nm³
--

- 2.6.2. PVP2 Chimenea Caldera Biogás.
- 2.6.3. PVP3 Filtro de mangas Área de Afino.

El informe correspondiente con estos puntos de vigilancia ha sido realizado por la empresa ECA, grupo Bureau Veritas, siendo Organismo de Control con numero de acreditación Nº01/EI098.

Las mediciones realizadas en este punto de vigilancia, se encuentran en el informe con número de Expediente:

Nº: 47-47-M01-2-005458

El informe se muestra a continuación.

In form e nº: 47-47-M01-2-005458 Hoja 1 de 23

ORGANISMO DE CONTROL AUTORIZADO ENTIDAD DE INSPECCIÓN acreditada por ENAC con acreditación Nº 01/E1098

 acreditación N° 01/E1098

 Delegación de
 CASTILLA Y LEÓN (Valladolid)

 Calle Magnesio n°2
 Edificio Magnesio 2ª planta.

 CP 47012
 Fax 983-212580 Telf 983-297555

ESTUDIO DE EMISIÓN DE CONTAMINANTES A LA ATMÓSFERA CORRESPONDIENTE A LA PLANTA DE RECUPERACIÓN Y COMPOSTAJE DE RESIDUOS URBANOS Y VERTEDERO DE RESIDUOS NO PELIGROS DE VALLADOLID.

UTE PLANTA DE TRATAMIENTO DE VALLADOLID Ctra. Nac. 601, km.198 47080 VALLADOLID

Informe nº: 47-47-M01-2-005458 Fecha: 23 de mayo de 2014

In form e nº: 47-47-M01-2-005458 Hoja 2 de 23

INDICE

- 1. ANTECEDENTES
- 2. OBJETO
- 3. DATOS GENERALES DE LA EMPRESA
- 4. DATOS GENERALES DEL ESTABLECIMIENTO
- 5. DATOS DE LA ACTIVIDAD
- 6. DATOS DEL MUESTREO
- 7. OBSERVACIONES Y COMENTARIOS
- 8. ANEXOS

ECA, Entidad Cola

In form e n°: 47-47-M01-2-005458 Hoja 3 de 23

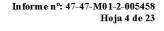
A petición de la empresa UTE, PLANTA DE TRATAMIENTO DE VALLADOLID, ECA, Entidad Colaboradora de la Administración, S.L.U. ha realizado las inspecciones correspondientes a las medidas de emisión de contaminantes a la atmósfera correspondiente a los focos siguientes:

Foco Nº	Nº Libro de registro	Descripción
F3		Caldera de Biogás
F4		Filtro de mangas (área afino de compost)

2. OBJETO

El objeto del presente informe es realizar las inspecciones reglamentarias periódicas establecidas en la ORDEN FYM/362/2014, de 30 de abril, por la que se declara que procede iniciar la actividad en la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, titularidad del Ayuntamiento de Valladolid y se modifica la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente, por la que se concede Autorización Ambiental a dicha instalación, y la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente por la que se concede Autorización Ambiental al Excmo. Ayuntamiento de Valladolid para la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid.

El control se lleva a cabo sobre los parámetros Partículas, H₂S, HCl, COT, Gases Combustion (SO₂, NOx y CO) y Opacidad


2.1. Motivo del expediente

Esta medida de emisión de contaminantes en la atmósfera se ha realizado para hacer un control reglamentario acreditado en la planta de la empresa UTE, PLANTA DE TRATAMIENTO DE VALLADOLID, en Valladolid.

X	Inspección reglamentaria	
	Inspección voluntaria/acreditada	
	Plan de vigilancia	
	PDG	
	Repetición de medidas	
X	Autorización Ambiental (AA)	

3. DATOS GENERALES DE LA EMPRESA

NOMBRE	UTE Planta de Tratamiento de Valladolid	
DOMICILIO SOCIAL	Ctra. Nac. 601, Km. 198. 47080 Valladolid	
CIF	U-47441605	
TELÉFONO	983 35 85 88	

A DATOS GENERALES DEL ESTABLECIMIENTO

NIRI	mm.s
DOMICILIO PLANTA	Ctra. N. 601, Km. 198. 47080 Valladolid
PERSONA DE CONTACTO	Jorge Mateo
ACTIVIDAD PRINCIPAL DE LA EMPRESA	Planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos
GRUPO C.A.P.C.A	B.09 04 01 02 — Vertederos de residuos industriales peligrosos o no peligrosos, de residuos biodegradables así como vertederos no incluidos en le epígrafe antenior. B.09 04 01 05 — Combustión con valorización energética de biogás no incluidos en le apartado anterior B.09 10 05 01 — Planta de producción de compost
HORAS DE FUNCIONAMIENTO	8 horas/día. 2920 horas/año

5. DATOS DE LA ACTIVIDAD

Los volúmenes de producción y materias primas utilizadas son los siguientes:

5.1. Consumo de materias primas

Materias primas	Consumo anual *
Residuos materia orgánica	196.064 t
*Datos anteriores a 2012	

5.2. Volúmenes de producción

PRODUCTOS	Producción
Compost	5.573 t
#Datas autoriasas a 2012	

5.3. Descripción resumida o esquematizada de los procesos de fabricación y focos de emisión asociados

El tratamiento que se realiza en el Centro de Tratamiento de Residuos consiste en:

<u>-Compostaje</u>. Una vez separada la materia orgánica pasará mediante cinta transportadora a la instalación de compostaje. La materia orgánica procede de las basuras urbanas, de los residuos para los que se solicita autorización y de la fracción sólida de la planta de mecanización. En los túneles de maduración se impulsa aire que es recirculado. El aire sobrante se inyecta en un biofiltro de madera de pino para su depuración.

Posteriormente, el material procedente de los túneles de maduración, considerado como compost bruto, es depurado para extraer impurezas como piedras, vidrio, etc. Este proceso se lleva a cabo mediante un sistema de doble cribado formado por trómeles de diferentes mallas y separación densimétrica final.

Finalmente, el compost obtenido pasa a la zona de acopio.

Los lixiviados generados en los túneles de maduración son recogidos en una cámara inferior y recirculados a los túneles con el fin de mantener la humedad, entre un 40-65%, de la masa en proceso de compostaje.

Informe nº: 47-47-M01-2-005458 Hoja 5 de 23

Metanización: es una digestión en depósitos cerrados sin aireación debido a la presencia de bacterias anaerobias que digieren la materia orgánica. Los residuos que pasan a digestión deben haber sufrido con anterioridad a su entrada en el digestor un pretratamiento consistente en la homogeneización, un desmenuzamiento, eliminación de metales férricos, adición de agua y posterior calentamiento a temperaturas de 30-40°C o de 50-60°C.

De este proceso se obtienen dos fracciones: un efluente líquido que se dirige a los túneles de maduración del compost y un producto digerido que también tiene entrada en la planta de compostaje.

Del proceso de mecanización se obtiene biogás que es utilizado en el motor de cogeneración para el abastecimiento energético de la planta.

Los rechazos procedentes de la Planta de Tratamiento son destinados al Depósito de Rechazos.

5.4. Plano general de la planta indicando los focos emisores

Ver plano en anexo II

5.5. Relación de focos emisores dispersos que sean significativos con una descripción de sus características y del tiempo de funcionamiento

Las fuentes o focos principales de emisiones difusas son:

- La deposición de residuos en el vaso y posteriores degradaciones aerobia y anaerobia.
- Las balsas de lixiviados, dónde la contaminación difusa procede de los procesos anaerobios.
- La planta de clasificación y pretratamiento de residuos, los túneles de fermentación y la zona de acopio de compost
- El biofiltro, en donde se trata el aire procedente de los túneles de fermentación y de la planta de clasificación y pretratamiento de residuos.

5.6. Relación de los focos emisores vehiculados existentes

Los focos existentes en la factoría son los siguientes:

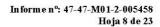
Nº Foco	Nº Foco Nº Libro registro Descripción		Observaciones
F1		Chimenea del motor de cogeneración de biogás	and the same of th
F3		Caldera de Biogás	
F4		Filtro de mangas (área afino de compost)	

5.7. Instalaciones de combustión industrial para la producción de energía

Las instalaciones de combustión industrial existentes en el UTE, Planta de Tratamiento de Valladolid son las siguientes:

Nº libro					Consumo	
Nº foco	registro	Instalación	Combustible	Potencia cal. (Kw)	Máximo horario	Total anual
F1	<u> </u>	Chimenea del motor de cogeneración de biogás	Biogás	650	-22	
F3		Caldera de Biogás	Biogás/Gasóleo	170	10000	

EDA, Endada C obsoratora de la Administración, S. A. Unipers oral. – Av. Can Fajó deb. Aurons. 9, Parque Empresata IA-7. Eff. Pabarabasis, 08774 Sant Cugat del Vallec (Bacelona) – Reg. Merc. Barcelona. Tomo 4390, Libro 3890 Secolón 2º Folio 20, Hoja nº B-44800, Inscripción 9º – C. IF. As 08 869807


Informe nº: 47-47-M01-2-005458 Hoja 6 de 23

6.1. Identificación de los focos emisores muestreados

Los focos muestreados son los descritos en el capítulo 1. ANTECEDENTES de este informe, de las características siguientes:

Informe n°: 47-47-M01-2-005458 Hoja 7 de 23 Partículas, Gases de combustión Contaminantes Partículas Diámetro Altura ł ł Chimenea 0,14 0,75 Diarias Anuales funcionamiento 2920 2920 00 00 Filtro de mangas Medidas correctoras 1 B.09.10.05.01 B.09.04.01.05 Grupo C.A.P.C.A 4615338 4615215 Coordenadas UTM 0351225 0351055 Descripción de los focos muestreados Filtro de mangas (área afino de compost) Descripción del Caldera de biogás Nº Libro de registro ŀ 1 Nº del foco F3 F4

6.2. Fecha y personal cualificado

INSPECTOR CUALIFICADO	TITULACIÓN	FECHA DE LA TOMA DE MUESTRAS	FOCO
José Manuel Arango Francisco García Contreras	T.S. Química Ambiental T.S. Salud Ambiental	24 de marzo de 2014	F3 y F4

6.3. Condiciones técnicas de la producción durante el muestreo y representatividad de las medidas

Durante la realización de la toma de muestras las condiciones de producción del establecimiento eran los siguientes, según la información y evidencias facilitadas por los responsables de la instalación:

Nº foco	Nº libro registro	Proceso (productos)	Capacidad de la producción nominal	Combustible/materia prima utilizados	Representatividad estimada
F3		Caldera de biogás	A demanda	Biogás	100 %
F4		Afino de compost	1 Túnel/12 h	Compost	100 %

Informe nº: 47-47-M01-2-005458 Hoja 9 de 23

6.4. Instalación para la toma de muestras

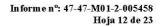
Los puntos de muestreo cumplen la normativa descrita en el anexo III de la Orden del MIE de 18 de octubre de 1976 (BOE 03.12.1976) sobre prevención y corrección de la contaminación industrial a la atmósfera, según las tablas siguientes:

FOCO №: F3 CALDERA BIOGAS		PROCESO:	PROCESO: COMBUSTIÓN	
TIPO DE CHIMI	DIÁMETRO	(m) N° BOCAS		
CHIMENEA CIRCULAR	X	0,14	1	
	PI		Ø 0,14 m	
o Distancias y dimensio	ones relativas a los punto	s de toma de muestra	s manuales	
Diámetro del conducto de humos en el punto de emisiones de gases			0,14 m	
Diámetro del conducto de humos en el punto de toma de muestra			0,14 m	
Altura total de la chimenea			12,0 m	
Altura del punto	de toma de muestras ma	nuales	4,70 m	
Distancia de la última perturba	ción al punto de toma de	muestras manuales	4,20 m	
Distancia entre el punto de toma de muestras manual y la siguiente perturbación			n 7,30 m	
Distancia perturbación ant	erior respecto al diám etr	o (OM18/1976)	30 Ø - CUMPLE	
Distancia perturbación post	terior respecto al diámet	ro (OM18/1976)	52 Ø - CUMPLE	
Número de orificios toma de	muestras manuales	1 - CUMPL	E	
Diámetro interior toma de n	100 mm	100 mm		
Longitud del cuello toma de muestras manuales			100 mm	
Altura toma de muestras res	pecto a plataforma	1,50 m		
Amplitud de plataforma frente a orificios toma muestras manuales		ales 2,50 m		
Área de plataf	orma	5,0 m ²		
Protección frente in	ntemperie	Interior		
Iluminación disponible en punto to	ma de muestras manuale	s Sí		
Accesibilid	ad	Escalera de	Escalera de gato	
Infraestructura para la sul		No		

FOCO Nº: F4 AFINO DE COMP	OST	PRO	CESO: FILTRO DE	MANGAS AFINO
TIPO DE CHIME	NEA		DIÁMETRO (m)	Nº BOCAS
CHIMENEA CIRCULAR	X		0,75	1
	P2 P3 P4 P5 P6			Ø 0,75 m
Distancias y dimension	nes relativas a los	puntos de to	oma de muestras m	anuales
Diámetro del conducto de hun	nos en el punto de	emisiones o	de gases	1,51 m (1,50x1,20
		· ·		
Diámetro del conducto de hu	mos en el punto de	00	3/57	0,75 m
	mos en el punto de al de la chimenea	00	3/57	0,75 m 0,10 m
	al de la chimenea	e toma de m	3/57	
Altura tot	al de la chimenea toma de muestras	e toma de m manuales	uestras	0,10 m
Altura tot Altura del punto de	al de la chimenea toma de muestras on al punto de toma	e toma de m manuales a de muestra	uestras as manuales	0,10 m 3,60 m
Altura tot Altura del punto de Distancia de la última perturbació	al de la chimenea toma de muestras on al punto de toma muestras manual y	e toma de m manuales a de muestra y la siguient	uestras as manuales e perturbación	0,10 m 3,60 m 2,70 m
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de s	al de la chimenea toma de muestras on al punto de toma muestras manual y or respecto al diám	e toma de m manuales a de muestra y la siguient netro (OM18	uestras as manuales e perturbación 8/1976)	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de n Distancia perturbación anterio	al de la chimenea toma de muestras on al punto de toma muestras manual y or respecto al dián ior respecto al dián	manuales a de muestra y la siguient netro (OM1	uestras as manuales e perturbación 8/1976) 8/1976) 1- NO CU	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de n Distancia perturbación anterio Distancia perturbación posteri	al de la chimenea toma de muestras on al punto de toma muestras manual y or respecto al diám ior respecto al diám muestras manuales	manuales a de muestra y la siguient netro (OM1	uestras as manuales e perturbación 8/1976) 8/1976) 1- NO CU 150 mm	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de n Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de n Longitud del cuello toma de n	al de la chimenea toma de muestras on al punto de toma muestras manual y or respecto al dián ior respecto al dián muestras manuales muestras manuales	manuales a de muestra y la siguient netro (OM18 netro (OM1	uestras as manuales e perturbación 8/1976) 1- NO CU 150 mm	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de la Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de la Diámetro interior toma de m Longitud del cuello toma de la Altura toma de muestras resp	al de la chimenea toma de muestras in al punto de toma muestras manual y or respecto al diám muestras manuales uuestras manuales muestras manuales pecto a plataforma	manuales a de muestra y la siguient netro (OM18 netro (OM18	uestras as manuales e perturbación 8/1976) 8/1976) 1- NO CU 150 mm 100 mm	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de la Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de la Diámetro interior toma de m Longitud del cuello toma de la Altura toma de muestras resp	al de la chimenea toma de muestras on al punto de toma muestras manual y or respecto al diám ior respecto al diám muestras manuales muestras manuales muestras manuales pecto a plataforma ios toma muestras	manuales a de muestra y la siguient netro (OM18 netro (OM18	uestras as manuales e perturbación 8/1976) 8/1976) 1- NO CU 150 mm 100 mm 1,10 m	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de la Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de la Diámetro interior toma de m Longitud del cuello toma de la Altura toma de muestras resp Amplitud de plataforma frente a orificio Área de platafo	al de la chimenea toma de muestras manual y or respecto al diám muestras manuales muestras manuales muestras manuales pecto a plataforma ios toma muestras orma	manuales a de muestra y la siguient netro (OM18 netro (OM18	uestras as manuales e perturbación 8/1976) 1- NO CU 150 mm 100 mm 1,10 m 1,50 m²	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de la Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de la Diámetro interior toma de m Longitud del cuello toma de m Altura toma de muestras resp Amplitud de plataforma frente a orificio Área de platafo	al de la chimenea toma de muestras in al punto de toma muestras manual y or respecto al diám muestras manuales muestras manuales muestras manuales pecto a plataforma ios toma muestras orma temperie	manuales a de muestra y la siguient netro (OM18 s manuales	uestras as manuales e perturbación 8/1976) 1- NO CU 150 mm 100 mm 1,10 m 1,50 m² No	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de la Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de la Diámetro interior toma de m Longitud del cuello toma de la Altura toma de muestras resp Amplitud de plataforma frente a orifici Área de platafo Protección frente in Iluminación disponible en punto tor	al de la chimenea toma de muestras manual y or respecto al diám muestras manuales muestras manuales muestras manuales muestras manuales muestras manuales pecto a plataforma ios toma muestras orma temperie ma de muestras manuales orma	manuales a de muestra y la siguient netro (OM18 s manuales	uestras as manuales e perturbación 8/1976) 1- NO CU 150 mm 100 mm 1,10 m 1,50 m²	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE
Altura tot Altura del punto de Distancia de la última perturbació Distancia entre el punto de toma de la Distancia perturbación anterio Distancia perturbación posteri Número de orificios toma de la Diámetro interior toma de m Longitud del cuello toma de m Altura toma de muestras resp Amplitud de plataforma frente a orificio Área de platafo	al de la chimenea toma de muestras in al punto de toma muestras manual y or respecto al diám ior respecto al diám muestras manuales muestras manuales muestras manuales pecto a plataforma ios toma muestras orma temperie na de muestras manuales na de muestras manuales orma	manuales a de muestra y la siguient netro (OM18 s manuales	uestras as manuales e perturbación 8/1976) 1- NO CU 150 mm 100 mm 1,10 m 1,00 m 1,50 m² No	0,10 m 3,60 m 2,70 m 2,30 m 3,6 Ø - CUMPLE 3,1 Ø - CUMPLE

EDA. Endada Culaborandora de la Administración. S.A. Unipresonal. —Av. Can Fadó deb Auroris. 9, Parque Empresaval A.7. Edif. Palauróbarie. (1877-8 ant Cugat del Vallec (Brookona). Tonn 4960. Llano 2960 Secolón 29, Folio 60). Hoja no 9-44260, Inscripción Par — L. F. A.08089001

Informe nº: 47-47-M01-2-005458 Hoja 11 de 23


6.5 Detalles de calidad y concentración de los gases utilizados:

6.5.1 Descripción y características de funcionamiento del equipo de medida

EQUIPO		5593							
El equipo Testo m	odelo 350XL es un a	nalizador portátil q	ue integra la medic	ión de emisiones de O	2, CO ₂ , CO, NOx y				
SO2. El sistema de	muestreo completo	consta de sonda Te	sto con filtro cerán	ico para partículas, lín	ea calefactada, con				
acondicionador de	gases.								
	CAR	ACTERÍSTICAS I	DE FUNCIONAM	IENTO					
Parámetro	O2	CO2	со	NOx (NO+NO ₂)	SO ₂				
Principio	Célula electroquímica	IR	Célula electroquímica	Célula electroquímica	Célula electroquímica				
Tiempo de respuesta	≤60 segundos	≤60 segundos	≤60 segundos	≤60 segundos	≤60 segundos				
Rango	0 – 21%	0 – 25%	0 – 10000 ppm	0 – 5000 ppm					
Fe	cha última verificaci	lón		27/01/2014					

6.5.2 Características del equipo de muestreo (métodos manuales)

PROCEDIMIENT OS DE MEDIDA					
Medida de velocidad					
La medida de velocidad se realiza mediante to	ubo de pitot tipo S y manómetro diferencial				
Calibración dispositivo medida de velocidad	Certificado 93/5C/1/022172				
Calibración tubo de pitot	Certificados 93/5C/1/022129				
Características del e	quipo de muestreo				
Diámetro boquilla	8 y 14 mm				
Características filtro	Filtro de cuarzo de 4.7 mm				
Calibración dispositivo de medida de volumen	Certificados 93/5C/1/025768				
Temperatura de filtración	Acondicionado a: Partículas: 160°C±15°C				
Tipo de borboteadores	Vástago recto				
Solución lavado partículas (UNE EN 13284-1)	H ₂ O destilada+ acetona (2:1)				

653 Perfil de Temperatura y Velocidad.

Con el objetivo de garantizar la representatividad del punto de toma de muestras, se ha procedido a medir la distribución de temperatura y velocidad en el conducto, obteniéndose los resultados resumidos en las siguientes tablas:

		FOCO F4			
	Perfi	les de temperatura y vo	elocidad		
		Fecha: 24/03/2014			
BOCA	PUNTO	Distancia (cm)	Temperatura (°C)	Velocidad (m/s)	
1	1	5,0	14,5	6,520	
1	2	11,0	14,3	7,029	
1	3	22,2	14,4	6,861	
1	4	52,8	14,5	6,688	
1	5	64,1	14,3	6,597	
1	6	70,0	14,4	6,946	
		Criterios de aceptació	n		
Ángulo de flu	jo de gas inferior a 15	° del eje	Conforme		
Ningt	in flujo local negativo		Conforme		
Presión diferencial mayor de 5 Pa			Conforme		
Cociente entre velocidad superior e inferior menor de 3:1			Conform	e	
	ndiciones del flujo d ndiciones isocinéticas		mantuvieron estables	durante el muestre	

Informe nº: 47-47-M01-2-005458 Hoja 13 de 23

6.6. Resultados de las mediciones y conformidad con la legislación

Las muestras se gestionaron correctamente, teniendo en cuenta las instrucciones técnicas de aplicación. Los análisis se llevaron a cabo en el laboratorio físico-químico acreditado por ENAC con nº de identificación 109/LE446 habiéndose obtenido los niveles de emisión de contaminantes en la atmósfera según se resumen en las tablas siguientes:

FOCO	F3 CALDERA BIOGAS	Me	dición			
Fecha	24/03/2014	Con	mbustión	00	275	
	Parámetro	1ª Medida	2ª Medida	3ª Medida	Valor Límite	Unidades
Hora de la	toma de muestras	09:25	10:30	11:35		hora
Duración d	el muestreo	60	60	60	(1 	Min.
Test de fug	as inicial		Conforme		-	
Test de fug	as final		Conforme	0	00000	
Temperatu	ra media de los gases	156,9	170,4	164,5		°C
Diámetro c	himenea		0,14		00	m
Velocidad 1	media de los gases	3,2	3,2	3,1		m/s
Caudal de	gases	89,9	89,8	88,7	S===S	Nm³/h
Porcentaje	de O ₂	6,70	6,83	7,00		%
Porcentaje	de CO2*1	12,26	12,15	12,00	((%
	Concentración	159	142	171		ppm
Emisión de	Concentración	198,8	177,5	213,8		mg/Nm ³
Emision as	Concentración 3% O ₂ Ref.	250,2	225,5	274,8	350	mg/Nm ³
	Carga	1,8 10-2	1,6 10-2	1,9 10-2	-	Kg/h
	Concentración	< 10	< 10	< 10		ppm
Emisión de	Concentración	< 28,6	< 28,6	< 28,6	-	mg/Nm ³
Emision as	Concentración 3% O ₂ Ref.	< 36,0	< 36,3	< 36,7	300	mg/Nm ³
	Carga	< 2,6 10 ⁻³	< 2,6 10 ⁻³	< 2,5 10 ⁻³		Kg/h
	Concentración	< 20	< 20	< 20	0 000 0	ppm
Emisión de		< 41,1	< 41,1	< 41,1	(1000)	mg/Nm ³
(medido como	NO ₂) Concentración 3% O ₂ Ref.	< 51,7	< 52,2	< 52,8	450	mg/Nm ³
	Carga	< 3,7 10 ⁻³	< 3,7 10 ⁻³	< 3,6 10 ⁻³	(1)	Kg/h
	Rendimiento	92,1	91,2	91,4	() EEEG	%
	Exceso de aire era del alcance de la acreditación	1,47	1,48	1,50		

FOCO	F3	CALDERA DE BIOGAS	N	Iedición			
Fecha	24/	03/2014	P	artículas	ru.	141	o N
		Parámetro	1ª Medida	2ª Medida	3ª Medida	Valor Límite	Unidade
Hora de la	toma	de muestras	09:25	10:30	11:35	0-00	hora
Duración	del m	uestreo	60	60	60	0 -20 0	Min.
Test de fu	gas in	icial	<2	<2	<2	0-20	%
Test de fu	gas fir	ıal	<2	<2	<2	0 -20 0	%
Temperat	ıra m	edia de los gases	156,9	170,4	164,5	0-20	°C
Diámetro	chime	enea		0,14	35	0 -20 0	m
Humedad			12,6	10,9	10,6	0.000	%
Velocidad	medi:	a de los gases	3,2	3,2	3,1	0-20	m/s
Caudal de	gases		89,9	89,8	88,7	0 - 20 0	Nm³/h
Volumen o	le mu	estra captado	0,941	0,894	0,893	0-30	Nm ³
Isocinetist	no		104,5	99,3	100,4	0 - 20 0	%
Porcentajo	e de O	92	6,70	6,83	7,00	0-00	%
Porcentaj	e de C	O ₂ *1	12,26	12,15	12,00	0 -20 0	0/0
100 A 100 A 100 A	2000	Concentración	9,29	4,90	4,91	0-00	mg/Nm³
Emisión		Concentración 3% O ₂ Ref.	11,69	6,22	6,31	50	mg/Nm ³
Partículas		Carga	8,3 10-4	4,4 10-4	4.4 10-4	0-20	Kg/h

In form e n°: 47-47-M01-2-005458 Hoja 14 de 23

FOCO I	F4 AFINO COMPOST]	Medición			
Fecha 2	24/03/2014		Partículas	56	76	V.
•	Parámetro	1ª Medid	2ª a Medida	3ª Medida	Valor Límite	Unidade
Hora de la to	ma de muestras	12:55	15:10	16:15	10-00	hora
Duración del	muestreo	60	60	60	10-0-1	Min.
Test de fugas	inicial	<2	<2	<2	10-00	%
Test de fugas	final	<2	<2	<2	10-40	%
Temperatura	media de los gases	14,6	16,8	17,3	10-00	° C
Diámetro chi	menea		0,75		10	m
Humedad	(2) days - 2 (3) (2) (2)	1,3	0,9	0,9	Y	%
Velocidad me	edia de los gases	6,9	6,4	6,1	10-0-0	m/s
Caudal de ga	ses	9.568,	8.813,9	8.421,9	Y	Nm ³ /h
Volumen de i	nuestra captado	1,089	1,018	0,963	10-00	Nm ³
Isocinetismo		99,9	101,3	100,3	19-0-1	%
Porcentaje de			20,9	•	10-0-0	%
Porcentaje de	e CO2 ^{*1}		< 0,10		19-0-1	%
Emisión de		1,70	1,82	1,92	50	mg/Nm
Partículas	Carga A DEL ALCANCE DE LA ACREDITACIÓN	1,6 10	1,6 10-2	1,6 10-2	10-00	Kg/h

Ensayo	Método	I.T. ECA	Tipo	Principio	Rango de operación	Incertidumbre de medida
Partículas	UNE-EN 13284- 1:2002	I.T. 714050	Captación isocinética	Gravimetría	1,3 - <20,6 mg/Nm ³ 20,6 - 296 mg/Nm ³ >296 mg/Nm ³	15.6% rel. 6.5% rel. 4.8% rel.
O ₂	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	1.4 – 21 % v/v	1% v/v
CO ₂	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Cálculo/IRND	25% ₩/₩	1% v/v
CO	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	4 - 30 ppm 30 - <250 ppm 250 - <2000 ppm	8,4% rel. 9,0% rel 7,9% rel
NO	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	10 - <250 ppm 250 - 3000 ppm	22% rel. 7,9% rel
NO ₂	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	10 - <30 ppm 30 - <50 ppm >50 ppm	11,0% rel. 8,8% rel 8,4% rel
SO_2	ASTM D6522-00	I.T. 714019	Analizador automático TESTO	Célula electroquímica	10 - <250 ppm 250 - <500 ppm 500 - <1500 ppm 1500 - <3500 ppm >3500 ppm	9,1% rel. 7,8% rel 8,1% rel 8,2% rel 10,0%

Informe nº: 47-47-M01-2-005458

Hoja 15 de 23

6.6. Valoración de los resultados según normativa vigente

6.6.1. De acuerdo al contenido de la ORDEN FYM/362/2014, de 30 de abril, por la que se declara que procede iniciar la actividad en la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, titularidad del Ayuntamiento de Valladolid y se modifica la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente, por la que se concede Autorización Ambiental a dicha instalación, y la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente por la que se concede Autorización Ambiental al Excmo. Ayuntamiento de Valladolid para la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, se han obtenido los valores de la siguiente tabla:

FOCO	F3 – Caldera de biogás					
Codificación muestra	Co	Concentración obtenida			Concentración	SUPERA
Codification muestra	Parámetro	Concentración	Media	Unidades	límite según legislación	SI / NO
1701624/UF/M01/24.03.14/F3 PST1		11,69				
1701624/UF/M01/24.03.14/F3 PST2	PST	6,22	8,07	mg/Nm ³	50	NO
1701624/UF/M01/24.03.14/F3 PST3		6,31				
1701624/UF/M01/24.03.14/F3 COMB1		250,2	250,2	mg/Nm ³	350	NO
1701624/UF/M01/24.03.14/F3 COMB2	со	225,5				
1701624/UF/M01/24.03.14/F3 COMB3		274,8				
1701624/UF/M01/24.03.14/F3 COMB1		<36,0		mg/Nm ³	300	NO
1701624/UF/M01/24.03.14/F3 COMB2	SO ₂	<36,3	<36,3			
1701624/UF/M01/24.03.14/F3 COMB3		<36,7				
1701624/UF/M01/24.03.14/F3 COMB1		<51,7				
1701624/UF/M01/24.03.14/F3 COMB2	NOx <52,	<52,2	<52,2	mg/Nm ³	450	NO
1701624/UF/M01/24.03.14/F3 COMB3		<52,8				

FOCO	F4 – Afino de compost					
Codificación muestra	Concentración obtenida			TI-11-1	Concentración	SUPERA
Coamcación muestra	Parámetro	Concentración	Media	- Unidades	límite según legislación	SI / NO
1701624/UF/M01/24.03.14/F4 PST1		1,70		mg/Nm³	50	NO
1701624/UF/M01/24.03.14/F4 PST2	PST	1,82	1,81			
1701624/UF/M01/24.03.14/F4 PST3	1	1,92				

Los valores de los blancos son inferiores al 10% del VLE para todos los parámetros:

Codificación muestra	Parámetro	Concentración blanco	Valor blanco(<10%VLE)
1701624/UF/M01/24.03.14/BLA PST	Partículas	<0,3 mg	CUMPLE
1701624/UF/M01/24.03.14/BLA LSO	Partículas	< 2 mg	CUMPLE

Entidad Colaboradora de la Administración, S.A. Unipersonal — Av. Can Fadó de Barrons. 9, Parque Empresarial A.7. Edif Palausbaris, 180774 Sant Ougat del Vallès (Bocolona) — Reg. Merc. Barcelona, Tomo 4399, Libro 3999, Secoión 2º, Folio 50. Hoja nº B-44280, Inscripción 1º — C. I.F. 4408 659901

Informe n°: 47-47-M01-2-005458 Hoja 16 de 23

5.6.2. Valoración de los resultados

Los valores de concentración horaria obtenidos en los focos F3 y F4, se encuentran por debajo de los valores límite legalmente admitidos y por tanto, la emisión del foco cumple con la legislación vigente citada.

6.7. Parámetros de la legislación no medidos

Se ha determinado el valor de todos los parámetros regulados por la legislación aplicable

6.8. Identificación de la posible exención del control de alguno de los focos detallados en el apartado 5.6.

SÍ hay exención: los focos emisores que no se han controlado se han debido a los siguientes motivos:

Foco Nº	Motivo
F1 - MOTOGENERADOR	Objeto de otro informe

7. OBSERVACIONES Y COMENTARIOS

7.1. La metodología a seguir ha sido la siguiente

Determinación	Basado en la Norma	Instrucción Técnica de ECA
Determinación de volumen de vapor de agua (H_2O)	UNE-EN-14790	I.T. 714085
Determinación de CO, CO $_2$ O $_2$ NOx, SO $_2$	ASTM D-6522-00	I.T. 714019
Determinación de emisión de partículas	UNE-EN-13284-1	I.T. 714050

7.2. Equipos utilizados en la inspección

Equipo	Marca/Modelo	Certificado	N° Equipo	Nº Serie
Contador de gas	ITRÓN / GALLUS 2000	93/5C/1/025768	16364	28698004
Vacuómetro	WIKA	93/5C/1/025769	15492	
Termómetro / termopar	TECORA / BRAVO H	93/5C/1/025770	15493	
Tubo de Pitot	TECORA / TCR TIPO S	93/5C/1/022129	12682	1176
Muestreador iso cinético	TECORA / ISOSTACK BASIC	93/5C/1/022191-22195-22208	16048	2220
Manómetro diferencial	TCR TECORA / ISOSTACK BASIC	93/5C/1/022172	16052	545357PT
Barómetro	TCR TECORA / ISOSTACK BASIC	93/5C/1/022171	16053	545357PT
Termómetro / termopar	TCR TECORA / ISOSTACK BASIC	93/51/022203	16410	545357PT
Termómetro / termopar	TECORA ISOSTACK BASIC	93/5C/1/022223	16418	
Balanza portátil	KERN / 440-49N	93/5C/1/023506	16126	WC0538825
Analizador de gases de combustión	TESTO / 350 XL	93/5C/1/023397	5593	00886218
Termómetro / termopar	TESTO	93/5C/1/023426	13428	06007451/708
Tubo de Pitot	TESTO / 06352045	93/5C/1/024053	8072	43/606
Los certificados de calibra	ción completos de los equipos están :	a disposición del solicitante.		**

Informe n°: 47-47-M01-2-005458 Hoja 17 de 23

Se recuerda a UTE PLANTA DE TRATAMIENTO DE VALLADOLID que ha de realizar un control anual de los focos emisores a la atmósfera, tal y como contempla la ORDEN FYM/362/2014, de 30 de abril, por la que se declara que procede iniciar la actividad en la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid, titularidad del Ayuntamiento de Valladolid y se modifica la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente, por la que se concede Autorización Ambiental a dicha instalación, y la Orden de 17 de diciembre de 2008 de la Consejería de Medio Ambiente por la que se concede Autorización Ambiental al Excmo. Ayuntamiento de Valladolid para la planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid.

8. ANEXOS

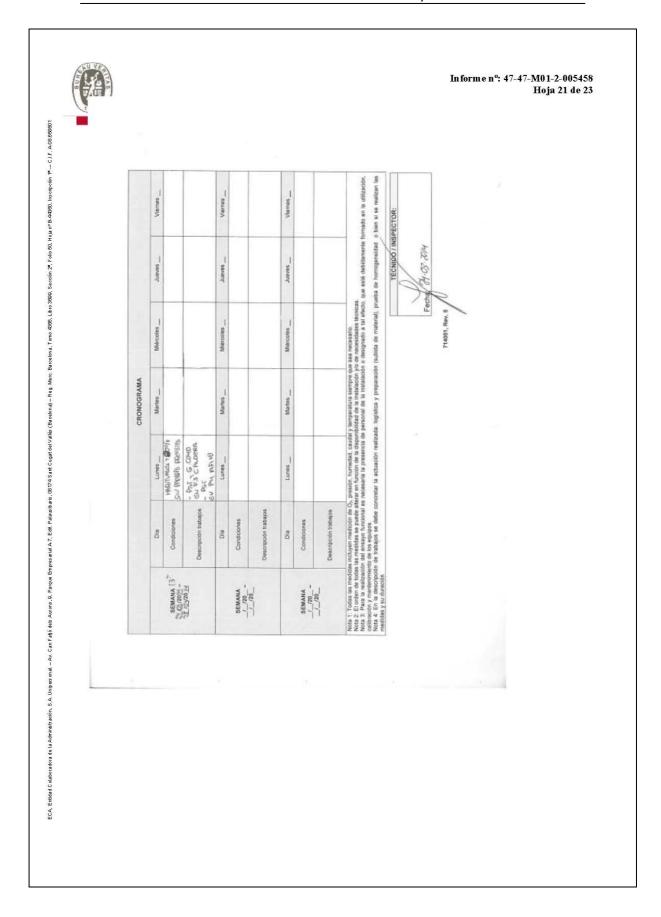
Se adjuntan los anexos siguientes:

ANEXO I: Plan de medición y cronograma.

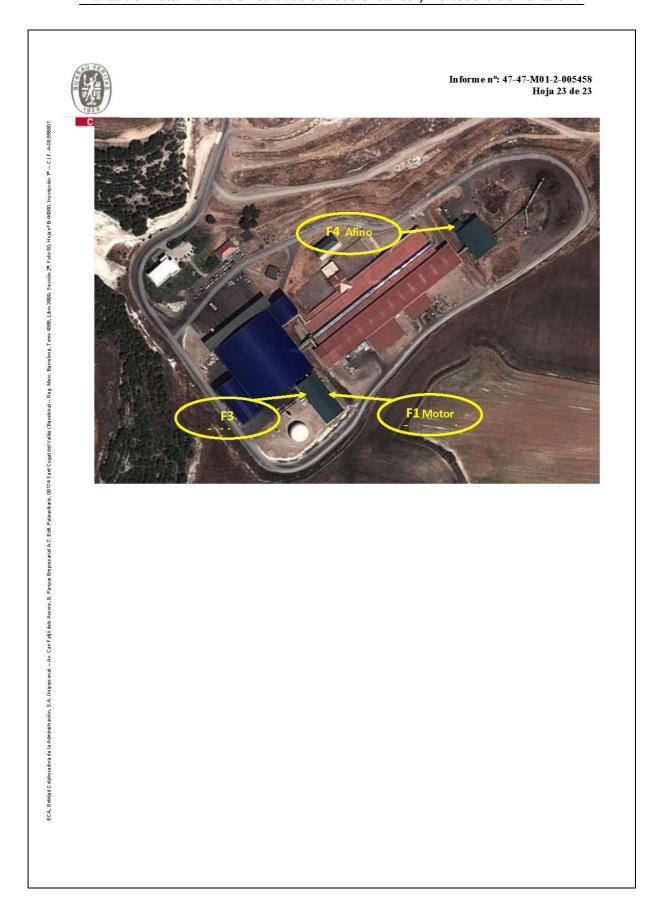
ANEXO II: Plano de la planta y situación de los focos.

Por el Inspector:

José Manuel Arango T.S. Química Ambiental Valladolid, 23 de mayo de 2014


V°B°


Javier Santamarta Supervisor Técnico



DATOS CLIENTE Y CRUENTO Y CRESTORO Responsable de Planta Men Motivo inspección / ensayo: Reglamento aplicable: Responsable de Planta Men Motivo inspección / ensayo: Reglamento aplicable: Responsable de Planta Men Motivo inspección / ensayo: Reglamento aplicable: Responsable mediciones: Instalación / Plataforma: Acceso seguro (Si No Acceso seguro (Si No Medico de transporte de materia: Si No Medico de transporte de materia: Si No Adecuación de puntos si No Ausencia de puntos de emisión accidental (válvulas, discos de ruptura: Si No Ausencia de puntos de emisión accidental (válvulas, discos de ruptura: Si No Proceso asociado al foco: CRESO PRARA Motero Proceso asociado al foco: CRESO PRARA MUESTRO DATOS DE PROCESO PARA MUESTRO Nº de medicias a efectuar: 3 en PH Puntos informos de mediciones de proceso (Representatividad): TORRESPONDE DE proceso confinuo proceso de confinuo responsable de de composição de la missión de la emisión instalados: Nº de medicias a efectuar: 3 en PH Puntos informos de medicion: Test de Nomogeneidad: Nº de medicias a efectuar: 3 en PH Puntos informos de medicion: Test de Nomogeneidad: Nº de medicias a efectuar: 3 en PH Puntos informos de medicion: Test de Nomogeneidad: Nº de medicias a efectuar: 3 en PH Puntos informos de medicion: Test de Nomogeneidad: Nº de medicias a efectuar: 3 en PH Puntos informos de medicion: Test de Nomogeneidad: Nº de medicias a efectuar: 3 en PH Puntos informos de medicion: Test de Nomogeneidad: NOTA: Las condiciones de operación del proceso en la planta durante el muestreo y cualquier circunstancia especial e incidencias que puedan habei rifluido en los resultados se indican al dorso de eda haba y en la hoja de campo (4 hoja doi segumento de tablo). NOTA: Las condiciones de operación del proceso en la planta durante el muestreo y cualquier circunstancia especial e incidencias que puedan habei rifluido en los resultados se indican al dorso de eda haba y en la hoja de campo (4 hoja doi segumento de tablo). TECNICO / INSPECTOR: JERNICO / INSPECTOR: JU				Informe n°: 47-47-M01-2-005 Hoja 19 de
DATOS CUENTE Y OBJETIVO DE No Seguimiento: (**) PALICIA DE No Seguimiento: (**) Paliaforma: Paco emisio: (**) Paliaforma:		PLAN	I DE MEDICIÓN	
Participate	Y OBJETIVO DE	Responsable de Planta: Jos Instalación: ANATONIO	no linno	
Parametros: Procedimientos aplicables Métodos medida:	SITIO DE	Foco emisor: F3 CREDERR BICEAS Instalación / Plataforma: INSTRUCIÓN -Acceso seguro (SI) No -Espacio / área de trabajo s -Suministros energía: -Medios de transporte de m Aldentificación de la fuenta	Fecha de mediciones: 24 03 2014 Responsable mediciones: 306 Monte, Pronco ufficiente/\$1 No - Musuem Gooders aterial: \$1 / No de emisión: \$1 / No	rectangular): \$\int_0,14\$ Cumple distancias vs perturbaciones: \$\si\ No \\ \frac{\(\beta_1/\text{in}\)}{\(\beta_1/\text{in}\)} = \(\beta_1/\text{in}\) Alfocas de muestreo: \$\int_0 \text{NO} \\ -\text{Adouación de puertos: \$\si\ No \\ -\text{SAM instalado: \$\si\ No \text{NO} \\ -\text{ADOUACIÓN TO NO ADAMA}
Proceso asociado al foco: CRECION DE Proceso continuo / proceso continuo sujeto a variación con el tiempo / proceso discontinuo Combustible utilizado: 8.06.05 Materias primas: 200.05 Materias de conc.): 200.05 Materias de conc.		Parametros:	Procedimientos aplicables:	LAE-C+ 13784 / 14 PPP
y DESVIACIONES AL METODO NOTA: Las condiciones de operación del proceso en la planta durante el muestreo y cualquier circumstancia especial e incidencias que puedan haber influido en los resultados se indican al dorso de esta hoja y/o en la hoja de campo (4º hoja del seguimiento de trabajo TÉCNICO / INSPECTOR:	PROCESO PARA	Combustible utilizado: 6 de Materias primas: 800000 Operación de planta (régim Condiciones de proceso (R Torre mante Parente P	en de alimentación en función de concentratividad) : electron en control (T, pérdidas de carga, lo control (T, pérdidas de carga, la emisión instalados:	nivies de conc.): especificar
Fecha M.ADPAGO	y DESVIACIONES	circunstancia especial e incid	encias que puedan haber influido	en los resultados se indican al dorso de
			0/	8 M. ADANGO

9					
				25	
		DE MEDICIÓN			
DATOS CLIENTE Y OBJETIVO DE MEDICIÓN	Nº seguimiento: /70/624/0	10/401	ensayo:	Reglamento aplicable:	
REVISIÓN DEL SITIO DE MEDICION	-Acceso seguro: Si / No -Espaclo / área de trabajo su -Suministros energía: -Medios de transporte de mi -Identificación de la fuente d	uficiente: Si / No - HANGLEN A aterial: Si / No - VO de emisión: Si / No VO usión accidental (válvulas,	- SAM is	ro conducto (circular / guiar): John Conducto (cir	50
	Parametros:	Procedimientos aplicables	4.00	os medida: 3284 - 14 <i>1</i> 48	
DATOS DE PROCESO PARA MUESTREO	Combustible utilizado: Materias primas: COMP Operación de planta (régime Condiciones de proceso (RI TUNAL COMPLE) TUNAL COMPLE Sistemas de depuración de Nº de medidas a efectuar: Puntos internos de medició Test de Momogeneidad: —	and de alimentación en función expresentatividad): CONTRO T. POT. CONTRO T.	del tipo (the proceso): NAS HUNDED OF LO MIRADO OF LO	,
OBERVACIONES y DESVIACIONES AL METODO	NOTA: Las condiciones de circunstancia especial e incide	operación del proceso en la encias que puedan haber influid mpo (4º hoja del seguimiento de	planta du	rante el muestreo y cualquier reultados se indican al dorso de	
		V	60NICO / 04-03	714001, Rev. 5	

2.6.4. PVP4 – Emisiones Sonoras.

No procede la evaluación de las Emisiones Sonoras para el Año 2014, de acuerdo a lo dispuesto en el REGLAMENTO MUNICIPAL SOBRE PROTECCIÓN DEL MEDIO AMBIENTE CONTRA LA EMISIÓN DE RUIDOS Y VIBRACIONES del Ayuntamiento de Valladolid, con Fecha de publicación en el BOP del 27-2-2002.

2.6.5. PVP5 - Compost.

Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U.

Las mediciones realizadas en este punto de vigilancia, se encuentran en los informes con referencias:

- Informe Medición Febrero 2014: AE2140654.
- Informe Medición Mayo 2014: AE2142063
- Informe Medición Agosto 2014: AE2143680.
- Informe Medición Noviembre 2014: AE2145169.

Los informes se muestran a continuación.

- Informe Medición Febrero 2014: AE2140654.

JAMAL CO	INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. LABORATORIO AGROALIMENTARIO / MEDIOAMBIENTE					
INFORME DE ENSAYO: ANÁLISIS MAT	ERIA ORGÁNICA			AE214065		
DATOS DEL PETICIONARIO			EXP	.: AE210009		
PETICIONARIO DIRECCIÓN POBLACIÓN	CTRA. N - 601, Km.	198	VALLADOLID			
DATOS DE LA MUESTRA						
DESCRIPCIÓN	AE2140654 COMPOST INZAMAC LAB AGR 18/02/2014					
PARÁMETROS	RESULTADOS	UNIDADES	MÉTODO ANALÍTICO			
CALCIO CALCIO CALCIO (CaO) CALCIO (CaO) CONDUCTIVIDAD ELÉCTRICA (EXT. 1/10) HUMEDAD MAGNESIO MAGNESIO (MgO) pH (EXT. 1/10) POTASIO POTASIO (K2O) RELACIÓN C/N SODIO SODIO (Na2O) MATERIAS ORGÁNICAS ÁCIDOS FÚLVICOS ÁCIDOS FÚLVICOS ÁCIDOS HÚMICOS CARBONO ORGÁNICO TOTAL MATERIA ORGÁNICA TOTAL PROPIEDADES FÍSICAS - GRANULOMETRÍA GRANULOMETRÍA < 10 mm IMPUREZAS > 2 mm PARTÍCULAS > 10 mm PARTÍCULAS > 5 mm PIEDRAS Y GRAVAS > 5 mm METALES PESADOS CADMIO TOTAL COBRE CROMO HEXAVALENTE CROMO HEXAVALENTE CROMO HEXAVALENTE	100,0 5,51 0,00 <0,01 <0,01 0,23 99 No detectado 16,0	% % µS/cm a 20°C % % % % % mg/kg % % % % % % % % mg/kg mg/kg mg/kg mg/kg mg/kg	ICP-OES CÁLCULO ELECTROMETRÍA GRAVIMETRÍA ICP-OES CÁLCULO ELECTROMETRÍA ICP-OES CÁLCULO CÁLCULO ICP-OES CÁLCULO VOLUMETRÍA VOLUMETRÍA GRAVIMETRÍA			
CROMO TOTAL MANGANESO MERCURIO TOTAL NIQUEL TOTAL PLOMO TOTAL ZINC TOTAL 19 de marzo de 2014	16,0 119 0,25 12,0 84,6 230	mg/kg mg/kg mg/kg mg/kg mg/kg	ICP-MS ICP-MS ICP-MS ICP-MS ICP-MS ICP-OES			
Fdo: Responsable Técnico HENAR PINILLA DOMINGO	ANÁLISIS REALIZADO	EN LABORATORIO	SUBCONTRATADO	Página 1 de		

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. LABORATORIO AGROALIMENTARIO / MEDIOAMBIENTE

INFORME DE ENSAYO: ANÁLISIS MATERIA ORGÁNICA

DATOS DEL PETICIONARIO

EXP.: AE210009

PETICIONARIO..... UTE PLANTA DE TRATAMIENTO DE VALLADOLID

DIRECCIÓN.. CTRA. N - 601, Km. 198 POBLACIÓN...... 47080 - VALLADOLID

...... MATERIA ORGÁNICA DESCRIPCION...

..... AE2140654 REFERENCIA

REF. PETICIONARIO...... COMPOST

.....INZAMAC LAB AGROALIMENTARIO RECOGIDA POR...

FECHA TOMA DE MUESTRAS...... 18/02/2014

RESULTADOS

PARÁMETROS RESULTADOS UNIDADES MÉTODO ANALÍTICO FORMAS NITROGENADAS Y FOSFORADAS FÓSFORO TOTAL 3.283 mg/kg ICP-OES FÓSFORO TOTAL (P2O5) 0.75 CÁLCULO NITRÓGENO AMONIACAL < 1,00 % N-NH4+ FLUJO SEGMENT 1,52 1,26 % N % N NITRÓGENO DUMAS ANÁLISIS ELEMENTAL NITRÓGENO KJELDAHL UV-VIS NITRÓGENO ORGÁNICO NITRÓGENO TOTAL % N % N 1,20 CÁLCULO ANÁLISIS ELEMENTAL 1.36

PARÁMETROS MICROBIOLÓGICOS

NMP/g RECUENTO ESCHERICHIA COLI <3 INVESTIGACIÓN DE SALMONELLA SPP. AUSENCIA /25 g DETEC. Y CONFIRM.

19 de marzo de 2014

Fdo: Responsable Técnico HENAR PINILLA DOMINGO

Página 2 de 2

ANÁLISIS REALIZADO EN LABORATORIO SUBCONTRATADO

ANÁLIS REALIZADORIO SUBCONTRATADORIO SUBCOR

LOS RESULTADOS SOLO DAN FE DE LA MUESTRA ANALIZADA. SE PROHIBE LA REPRODUCCIÓN PARCIAL DE LOS DATOS

FPE/15119-05 R1

- Informe Medición Mayo 2014: AE2142063

WIZWAC	ı	_ABORATORIO A	AGROALIMENTARIO / MED	IOAMBIENTE
INFORME DE ENSAYO: ANÁLISIS MAT	ERIA ORGÁNICA			AE2142063
DATOS DEL PETICIONARIO			EXF	P.: AE210009
PETICIONARIO DIRECCIÓN POBLACIÓN	CTRA. N - 601, Km.	198	VALLADOLID	
DATOS DE LA MUESTRA				
DESCRIPCIÓN REFERENCIA REF. PETICIONARIO RECOGIDA POR FECHA TOMA DE MUESTRAS INICIO / FIN ANÁLISIS	AE2142063 COMPOST INZAMAC LAB AGR 14/05/2014			
PARÁMETROS	RESULTADOS	UNIDADES	MÉTODO ANALÍTICO	
CALCIO CALCIO (CaO) CONDUCTIVIDAD ELÉCTRICA (EXT. 1/10) HUMEDAD MAGNESIO MAGNESIO (MgO) pH (EXT. 1/10) POTASIO POTASIO POTASIO (K2O) RELACIÓN C/N SODIO SODIO (Na2O) MATERIAS ORGÁNICAS ÁCIDOS HÚMICOS CARBONO ORGÁNICO TOTAL MATERIA ORGÁNICA TOTAL PROPIEDADES FÍSICAS - GRANULOMETRÍA GRANULOMETRÍA < 10 mm IMPUREZAS > 2 mm PARTÍCULAS > 25 mm PIEDRAS Y GRAVAS > 5 mm METALES PESADOS CADMIO TOTAL COBRE CROMO HEXAVALENTE CROMO HEXAVALENTE CROMO TOTAL MANGANESO MERCURIO TOTAL MANGANESO MERCURIO TOTAL	100,0 0,45 0,00 <0,01 5,91 0,61 133 No detectado 17,4 157 0,35	% % % % % % % % % % % % %	ICP-OES CÁLCULO ELECTROMETRÍA GRAVIMETRÍA ICP-OES CÁLCULO ELECTROMETRÍA ICP-OES CÁLCULO CÁLCULO ICP-OES CÁLCULO VOLUMETRÍA VOLUMETRÍA GRAVIMETRÍA ICP-MS ICP-OES ICP-MS ICP-OES ICP-MS ICP-OES	
NIQUEL TOTAL PLOMO TOTAL ZINC TOTAL 9 de junio de 2014 Fdo: Responsable Técnico HENAR PINILLA DOMINGO	17,6 72,6 276	mg/kg mg/kg mg/kg	ICP-MS ICP-MS ICP-OES	

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. LABORATORIO AGROALIMENTARIO / MEDIOAMBIENTE

INFORME DE ENSAYO: ANÁLISIS MATERIA ORGÁNICA

DATOS DEL PETICIONARIO

EXP.: AE210009

PETICIONARIO..... UTE PLANTA DE TRATAMIENTO DE VALLADOLID

DIRECCIÓN.. CTRA. N - 601, Km. 198 POBLACIÓN...... 47080 - VALLADOLID

...... MATERIA ORGÁNICA DESCRIPCION...

..... AE2142063 REFERENCIA

REF. PETICIONARIO...... COMPOST

.....INZAMAC LAB AGROALIMENTARIO RECOGIDA POR...

FECHA TOMA DE MUESTRAS...... 14/05/2014

INICIO / FIN ANALISIS......14/05/14 - 09/06/14

RESULTADOS

PARÁMETROS RESULTADOS UNIDADES MÉTODO ANALÍTICO FORMAS NITROGENADAS Y FOSFORADAS FÓSFORO TOTAL 4.631 mg/kg ICP-OES FÓSFORO TOTAL (P2O5) 1,06 CÁLCULO NITRÓGENO AMONIACAL < 1,00 % N-NH4+ FLUJO SEGMENT 1,58 1,53 % N % N NITRÓGENO DUMAS ANÁLISIS ELEMENTAL NITRÓGENO KJELDAHL UV-VIS NITRÓGENO ORGÁNICO NITRÓGENO TOTAL % N % N 1.53 CÁLCULO ANÁLISIS ELEMENTAL 1.58

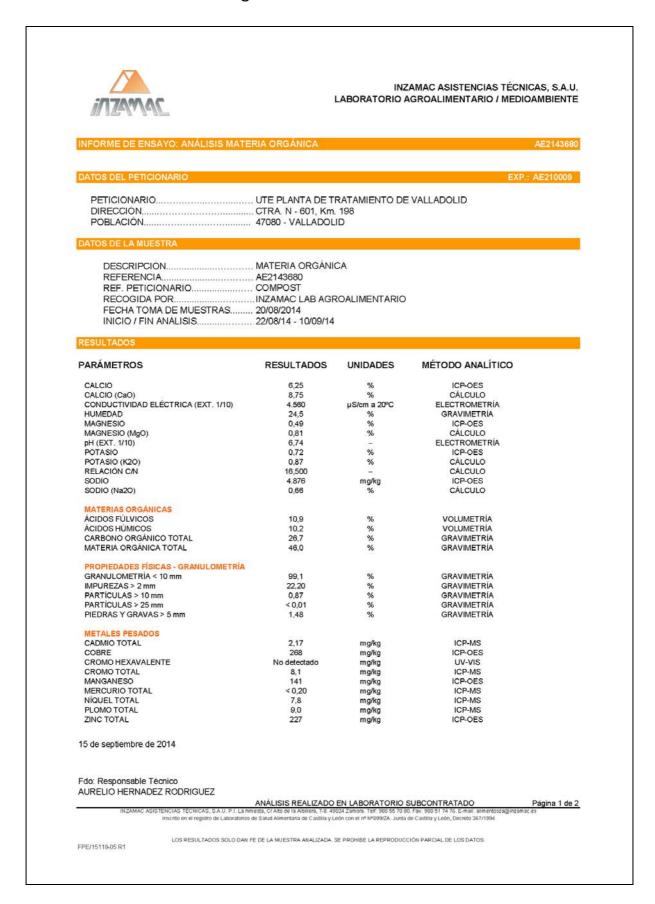
PARÁMETROS MICROBIOLÓGICOS

NMP/g RECUENTO ESCHERICHIA COLI <3 INVESTIGACIÓN DE SALMONELLA SPP. AUSENCIA /25 g DETEC. Y CONFIRM.

9 de junio de 2014

Fdo: Responsable Técnico HENAR PINILLA DOMINGO

Página 2 de 2


ANÁLISIS REALIZADO EN LABORATORIO SUBCONTRATADO

ANÁLIS REALIZADORIO SUBCONTRATADORIO SUBCOR

LOS RESULTADOS SOLO DAN FE DE LA MUESTRA ANALIZADA. SE PROHIBE LA REPRODUCCIÓN PARCIAL DE LOS DATOS

FPE/15119-05 R1

- Informe Medición Agosto 2014: AE2143680.

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. LABORATORIO AGROALIMENTARIO / MEDIOAMBIENTE

INFORME DE ENSAYO: ANÁLISIS MATERIA ORGÁNICA

DATOS DEL PETICIONARIO

EXP.: AE210009

PETICIONARIO..... UTE PLANTA DE TRATAMIENTO DE VALLADOLID

DIRECCIÓN.. CTRA. N - 601, Km. 198 POBLACIÓN...... 47080 - VALLADOLID

..... MATERIA ORGÁNICA DESCRIPCION...

..... AE2143680 REFERENCIA

REF. PETICIONARIO...... COMPOST

.....INZAMAC LAB AGROALIMENTARIO RECOGIDA POR...

FECHA TOMA DE MUESTRAS...... 20/08/2014

RESULTADOS

PARÁMETROS RESULTADOS UNIDADES MÉTODO ANALÍTICO FORMAS NITROGENADAS Y FOSFORADAS FÓSFORO TOTAL 5.163 mg/kg ICP-OES FÓSFORO TOTAL (P2O5) 1,18 0,11 CÁLCULO NITRÓGENO AMONIACAL % N-NH4+ FLUJO SEGMENT 1,90 1,73 % N % N NITRÓGENO DUMAS ANÁLISIS ELEMENTAL NITRÓGENO KJELDAHL UV-VIS NITRÓGENO ORGÁNICO NITRÓGENO TOTAL % N % N 1,62 CÁLCULO ANÁLISIS ELEMENTAL 1.91

PARÁMETROS MICROBIOLÓGICOS

NMP/g RECUENTO ESCHERICHIA COLI 43.0 INVESTIGACIÓN DE SALMONELLA SPP. AUSENCIA /25 g DETEC. Y CONFIRM.

15 de septiembre de 2014

Fdo: Responsable Técnico AURELIO HERNADEZ RODRIGUEZ

Página 2 de 2

ANÁLISIS REALIZADO EN LABORATORIO SUBCONTRATADO

ANÁLIS REALIZADORIO SUBCONTRATADORIO SUBCOR

LOS RESULTADOS SOLO DAN FE DE LA MUESTRA ANALIZADA. SE PROHIBE LA REPRODUCCIÓN PARCIAL DE LOS DATOS

FPE/15119-05 R1

- Informe Medición Noviembre 2014: AE2145169.

JPMAT IN	1		AMAC ASISTENCIAS TÉCN AGROALIMENTARIO / MEDI	
INFORME DE ENSAYO: ANÁLISIS MATE	ERIA ORGÁNICA			AE2145169
DATOS DEL PETICIONARIO			EXP	: AE210009
PETICIONARIO	CTRA. N - 601, Km.	198	VALLADOLID	
DATOS DE LA MUESTRA				
DESCRIPCIONREFERENCIAREF. PETICIONARIORECOGIDA PORFECHA TOMA DE MUESTRASINICIO / FIN ANALISISRESULTADOS	AE2145169 COMPOST INZAMAC LAB AGF 13/11/2014			
PARÁMETROS	RESULTADOS	UNIDADES	MÉTODO ANALÍTICO	
CALCIO CALCIO (CaO) CONDUCTIVIDAD ELÉCTRICA (EXT. 1/10) HUMEDAD MAGNESIO MAGNESIO (MgO) pH (EXT. 1/10) POTASIO	6,46 9,04 3,960 20,4 0,50 0,83 6,75 0,58	% μS/cm a 20°C % % % — —	ICP-OES CÁLCULO ELECTROMETRÍA GRAVIMETRÍA ICP-OES CÁLCULO ELECTROMETRÍA ICP-OES	
POTASIO (K2O) RELACIÓN C/N SODIO SODIO (Na2O)	0,70 15,4 4.848 0,65	% - mg/kg %	CÁLCULO CÁLCULO ICP-OES CÁLCULO	
MATERIAS ORGANICAS ÁCIDOS FÚLVICOS ÁCIDOS HÚMICOS CARBONO ORGÁNICO TOTAL MATERIA ORGÁNICA TOTAL	9,6 7,3 24,9 42,9	% % %	VOLUMETRÍA VOLUMETRÍA GRAVIMETRÍA GRAVIMETRÍA	
PROPIEDADES FÍSICAS - GRANULOMETRÍA GRANULOMETRÍA < 10 mm IMPUREZAS > 2 mm PARTÍCULAS > 10 mm PARTÍCULAS > 25 mm PIEDRAS Y GRAVAS > 5 mm	100,0 10,10 0,00 < 0,01 < 0,02	% % % %	GRAVIMETRÍA GRAVIMETRÍA GRAVIMETRÍA GRAVIMETRÍA GRAVIMETRÍA	
METALES PESADOS CADMIO TOTAL COBRE CROMO HEXAVALENTE CROMO TOTAL MANGANESO MERCURIO TOTAL NÍQUEL TOTAL	0,47 49,8 No detectado 12,6 90,3 < 0,20 13,0	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ICP-MS ICP-OES UV-VIS ICP-MS ICP-OES ICP-MS ICP-MS	
PLOMO TOTAL ZINC TOTAL 22 de diciembre de 2014	42,6 172	mg/kg mg/kg	ICP-MS ICP-OES	
Fdo: Responsable Técnico AURELIO HERNADEZ RODRIGUEZ				221.10
INZAMAC ASISTENCIAS TECNICAS, S.A.U. P.I. La P Inscrito en el registro de Laboratorio		024 Zamora. Telf: 980 55 70 8		Página 1 de :

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. LABORATORIO AGROALIMENTARIO / MEDIOAMBIENTE

INFORME DE ENSAYO: ANÁLISIS MATERIA ORGÁNICA

DATOS DEL PETICIONARIO

EXP.: AE210009

PETICIONARIO..... UTE PLANTA DE TRATAMIENTO DE VALLADOLID

DIRECCIÓN.. CTRA. N - 601, Km. 198 POBLACIÓN...... 47080 - VALLADOLID

..... MATERIA ORGÁNICA DESCRIPCION...

..... AE2145169 REFERENCIA

REF. PETICIONARIO...... COMPOST

.....INZAMAC LAB AGROALIMENTARIO RECOGIDA POR....

FECHA TOMA DE MUESTRAS...... 13/11/2014

RESULTADOS

PARÁMETROS RESULTADOS UNIDADES MÉTODO ANALÍTICO FORMAS NITROGENADAS Y FOSFORADAS FÓSFORO TOTAL 5.163 mg/kg ICP-OES FÓSFORO TOTAL (P2O5) 1,18 0,11 CÁLCULO NITRÓGENO AMONIACAL % N-NH4+ FLUJO SEGMENT 1,90 1,73 % N % N NITRÓGENO DUMAS ANÁLISIS ELEMENTAL NITRÓGENO KJELDAHL UV-VIS NITRÓGENO ORGÁNICO NITRÓGENO TOTAL % N % N 1,62 CÁLCULO ANÁLISIS ELEMENTAL 1.91

PARÁMETROS MICROBIOLÓGICOS

NMP/g RECUENTO ESCHERICHIA COLI 43.0 INVESTIGACIÓN DE SALMONELLA SPP. AUSENCIA /25 g DETEC. Y CONFIRM.

22 de diciembre de 2014

Fdo: Responsable Técnico AURELIO HERNADEZ RODRIGUEZ

ANÁLISIS REALIZADO EN LABORATORIO SUBCONTRATADO

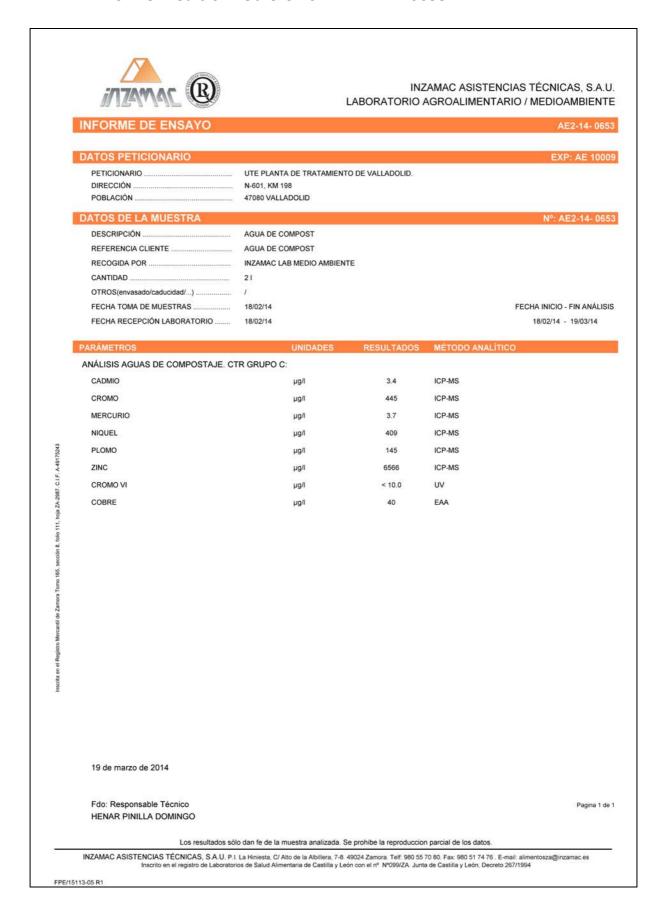
ANÁLIS REALIZADORIO SUBCONTRATADORIO SUBCOR

Página 2 de 2

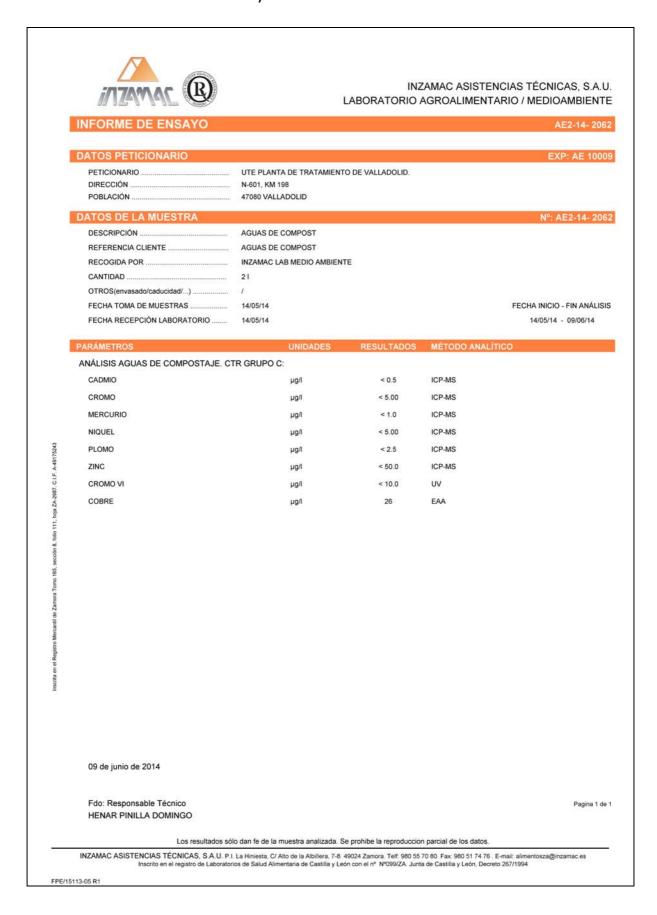
LOS RESULTADOS SOLO DAN FE DE LA MUESTRA ANALIZADA. SE PROHIBE LA REPRODUCCIÓN PARCIAL DE LOS DATOS

FPE/15119-05 R1

2.6.6. PVP6 – Agua Recirculada Proceso de Compostaje

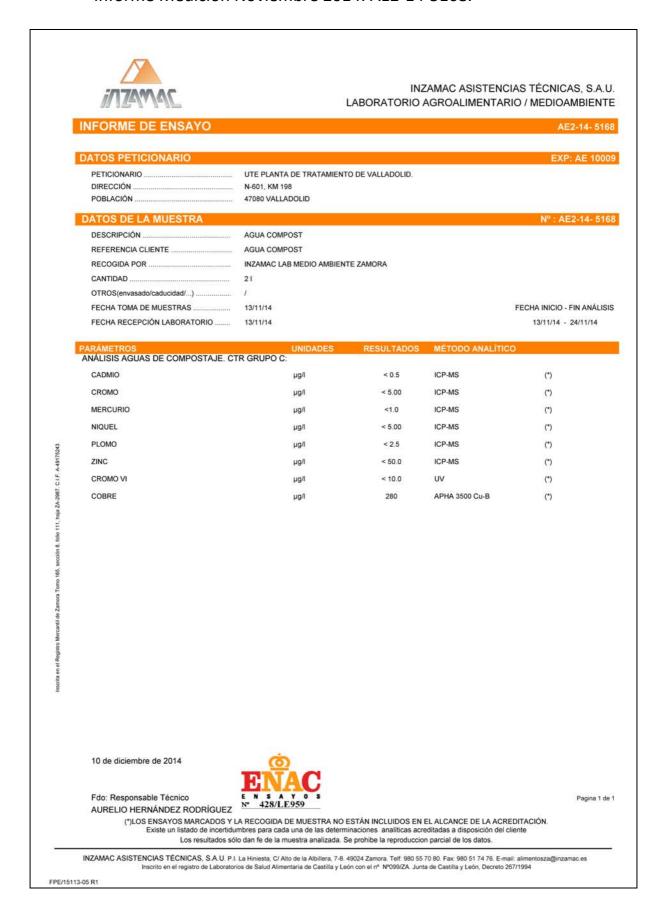

Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U.

Las mediciones realizadas en este punto de vigilancia, se encuentran en los informes con referencias:


- Informe Medición Febrero 2014: AE2-14-0653.
- Informe Medición Mayo 2014: AE2-14- 2058.
- Informe Medición Agosto 2014: AE2-14-3679.
- Informe Medición Noviembre 2014: AE2-14-5168.

Los informes son mostrados a continuación.

- Informe Medición Febrero 2014: AE2-14-0653.


- Informe Medición Mayo 2014: AE2-14- 2058.

- Informe Medición Agosto 2014: AE2-14-3679.

- Informe Medición Noviembre 2014: AE2-14-5168.

3. INFORMES DESARROLLO PLAN VIGILANCIA VERTEDERO DE RESIDUOS NO PELIGROSOS.

A continuación se muestra el Plan de Vigilancia del Vertedero de Residuos No Peligrosos de Valladolid.

PLAN DE VIGILANCIA AMBIENTAL

VERTEDERO DE RESIDUOS NO PELIGROSOS DE VALLADOLID

VERTEDERO DE RESIDUOS NO PELIGROSOS DE VALLADOLID

FOMENTO DE CONSTRUCCIONES Y CONTRATAS SA.

AÑO 2014

3.1. INTRODUCCIÓN

El presente informe recoge todos los aspectos que afectan al Plan de Vigilancia Ambiental del Vertedero, recogidos en la orden de 17 de Diciembre de 2008 de la Consejería de Medio Ambiente por la que se concede autorización ambiental al Excmo. Ayuntamiento de Valladolid para planta de recuperación y compostaje de residuos urbanos y vertedero de residuos no peligrosos ubicados en el término municipal de Valladolid.

En dichos planes se detallan los distintos parámetros a medir así como la ubicación de los puntos de medición y control para cada uno de estos parámetros, así como hojas de registro de los mismos, cronogramas con la planificación de las mediciones a realizar, etc.

3.2. CODIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS

En ambos planes de vigilancia se ha seguido una codificación a la hora de identificar el punto y característica que se debe analizar.

Esta codificación consta de cuatro términos:

- El primer termino, identifica el punto a medir para su localización en el plano:
 - PVV1....12: puntos pertenecientes al vertedero.
- El segundo término indica la naturaleza al cual pertenece la muestra a tomar. Siendo los siguientes:

• ATM: Atmósfera

• EFL: Efluente

• TOP: Control Topográfico.

- El tercer término indica el aspecto del punto a medir. Siendo los siguientes:

• EMI: Emisiones.

• INM: Inmisiones.

DAT: Datos Meteorológicos.

LIX: Lixiviados

• SUPAR: Aguas Superficiales Arriba.

• SUPAB: Aguas Superficiales Abajo.

• SUBAR: Aguas Subterráneas Arriba.

• SUBAB: Aguas Subterráneas Abajo.

- El cuarto término indica el número de foco dentro de esa subcategoría. Siendo los siguientes términos.
 - RUI: Control de ruido.
 - CHIM1: Chimenea nº1.
 - CHIM2: Chimenea nº2.
 - CHIM3: Chimenea nº3.
 - CHIM4: Chimenea nº4.

Para comprender esta explicación se partirá del siguiente ejemplo.

PVV1/ATM/EMI/CHIM1

Punto de Vigilancia del Vertedero número 1, correspondiente a la atmósfera, emisión de la Chimenea 1.

3.3. IDENTIFICACIÓN DE PUNTOS OBJETO DE ANÁLISIS

A continuación en la siguiente tabla, se muestra la identificación, el código, la descripción y la frecuencia de los condicionantes de la Autorización Ambiental para el Vertedero de Residuos No peligrosos de Valladolid.

Punto	Código	Descripción	Frecuencia
PVV1	PVV1/ATM/DAT	Datos Meteorológicos	Diaria
PVV2	PVV2/ATM/EMI/CHIM1	Chimenea 1	Mensual
PVV3	PVV3/ATM/EMI/CHIM2	Chimenea 2	Mensual
PVV4	PVV4/ATM/EMI/CHIM3	Chimenea 3	Mensual
PVV5	PVV5/ATM/EMI/CHIM4	Chimenea 4	Mensual
PVV6	PVV6/ATM/EMI/RUI	Punto Medición Emisiones sonoras	-
PVV7	PVV7/ATM/INM	Punto Medición Inmisiones	Anual
PVV8	PVV8/EFL/SUPAB	Aguas Superficiales – aguas abajo	Mensual
PVV9	PVV9/EFL/SUBAR	Aguas Subterráneas – aguas arriba	Trimestral y Semestral
PVV10	PVV10/EFL/SUBAB	Aguas Subterráneas – aguas abajo	Mensual y Semestral
PVV11	PVV11/EFL/LIX	Lixiviados	Mensual y Trimestral
PVV12	PVV12/TOP	Control topográfico	Anual

La localización de los puntos se muestra en la siguiente vista general del vertedero.

Vista general del Vertedero de Residuos no Peligrosos de Valladolid.

3.4. CALENDARIO DE VIGILANCIA AMBIENTAL PARA EL VERTEDERO DE RESIDUOS NO PELIGROSOS DE VALLADOLID.

Año 2014

				Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
PVV1	PVV1/ATM/DAT	Datos Meteorológicos	Diaria	х	х	х	х	х	х	х	х	х	х	х	х
PVV2	PVV2/ATM/EMI/CHIM1	Chimenea 1	Mensual	х	х	х	х	х	х	х	х	х	х	х	х
PVV3	PVV3/ATM/EMI/CHIM2	Chimenea 2	Mensual	х	х	х	х	х	х	х	х	х	х	х	х
PVV4	PVV4/ATM/EMI/CHIM3	Chimenea 3	Mensual	х	х	х	х	х	х	х	х	х	х	х	х
PVV5	PVV5/ATM/EMI/CHIM4	Chimenea 4	Mensual	х	х	х	х	х	х	х	х	х	х	х	х
PVV6	PVV6/ATM/EMI/RUI	Punto Medición Emisiones sonoras	-												
PVV7	PVV7/ATM/INM	Punto Medición Inmisiones	Anual										х		
PVV8	PVV8/EFL/SUPAB	Aguas Superficiales –aguas abajo	Mensual	х	х	х	х	х	х	х	х	х	х	х	х
PVV9	PVV9/EFL/SUBAR	Aguas Subterráneas –aguas arriba	Trimestral y Semestral		х			х			х			х	
PVV10	PVV10/EFL/SUBAB	Aguas Subterráneas –aguas abajo	Mensual y Semestral	х	х	х	х	х	х	х	х	х	х	х	х
PVV11	PVV11/EFL/LIX	Lixiviados	Mensual y Trimestral	х	х	х	х	х	х	х	х	х	х	х	х
PVV12	PVV12/TOP	Control topográfico	Anual							х					

3.5 PARAMETROS DE MEDICIÓN

Parámetros a medir de acuerdo a la Autorización Ambiental para el Vertedero de Residuos No Peligrosos de Valladolid.

Punto de Vigilancia				Pa	arámetros An	alizados					
PVV1	Volumen de l	Precipitación	Temperatura M	ínima y Máxima	Dirección y F Viento Dor		Ev	/aporación		Humed	ad Atmosférica
PVV2	CH4	CO2	со	COV´s,	H2S		NH3,	HCI	me	ercaptanos	presión atmosférica
PVV3	CH4	CO2	со	COV´s,	H2S		NH3,	HCI	me	ercaptanos	presión atmosférica
PVV4	CH4	CO2	со	COV´s,	H2S		NH3,	HCI	me	ercaptanos	presión atmosférica
PVV5	CH4	CO2	со	COV´s,	H2S		NH3,	HCI	me	ercaptanos	presión atmosférica
PVV6					dB(A)						
PVV7					Partículas PN	И10					
	Turbidez	рН	Conductiv	idad [)QO	DBO5		СОТ		02	Materia en Suspensión
	NH4+	NO3-	NO2-		As	Ва		Cd		Cr	Cr+6
PVV8	Cu	Hg	Мо		Ni	Pb		Sb		Se	Zn
	Fenoles	Hidrocarbur	os Cloruro	os Flu	oruros	Sulfatos		Fosfatos		oniformes Totales	Coniformes Fecales
	Estreptococos fecales	Bacterias Sul reductora	Salmone	llas							

Planta de Tratamiento de Residuos Sólidos Urbanos y Vertedero de Valladolid

	Turbidez	рН	Conductividad	DQO	DBO5	СОТ	02	Materia en Suspensión
	NH4+	NO3-	NO2-	As	Ва	Cd	Cr	Cr+6
PVV9	Cu	Hg	Мо	Ni	Pb	Sb	Se	Zn
	Fenoles	Hidrocarburos	Cloruros	Fluoruros	Sulfatos	Fosfatos	Coniformes Totales	Coniformes Fecales
	Estreptococos fecales	Bacterias Sulfito reductoras	Salmonellas					
	Turbidez	рН	Conductividad	DQO	DBO5	СОТ	02	Materia en Suspensión
	NH4+	NO3-	NO2-	As	Ва	Cd	Cr	Cr+6
PVV10	Cu	Hg	Мо	Ni	Pb	Sb	Se	Zn
	Fenoles	Hidrocarburos	Cloruros	Fluoruros	Sulfatos	Fosfatos	Coniformes Totales	Coniformes Fecales
	Estreptococos fecales	Bacterias Sulfito reductoras	Salmonellas					
	Turbidez	рН	Conductividad	DQO	DBO5	СОТ		Materia en Suspensión
	NH4+	NO3-	NO2-	As	Ва	Cd	Cr	Cr+6
PVV11	Cu	Hg	Мо	Ni	Pb	Sb	Se	Zn
	Fenoles	Hidrocarburos	Cloruros	Fluoruros	Sulfatos	Fosfatos	Coniformes Totales	Coniformes Fecales
	Estreptococos fecales	Bacterias Sulfito reductoras	Salmonellas					
PVV12	Estructura y	· composición del vas	o de vertido		Comportamiento de	l asentamiento del n	ivel del vaso de vertid	0

3.6. INFORMES PLAN DE VIGILANCIA AMBIENTAL VERTEDERO DE RESIDUOS NO PELIGROSOS DE VALLADOLID.

3.6.1. PVV1 – Datos Meteorológicos

El seguimiento de los datos meteorológicos es realizado mediante los datos obtenidos en la Estación meteorológica existente en las instalaciones del vertedero.

Las mediciones realizadas en este punto de vigilancia, se encuentran en los informes correspondientes a cada mes:

- Informe Mes Enero 2014
- Informe Mes Febrero 2014
- Informe Mes Marzo 2014
- Informe Mes Abril 2014
- Informe Mes Mayo 2014
- Informe Mes Junio 2014
- Informe Mes Julio 2014
- Informe Mes Agosto 2014
- Informe Mes Septiembre 2014
- Informe Mes Octubre 2014
- Informe Mes Noviembre 2014
- Informe Mes Diciembre 2014

A modo resumen también es mostrado el Informe Anual 2014.

Los informes se muestran a continuación.

Informe Mes Enero 2014

INFORME DATOS

Plan de Vigilancia Ambiental Vertedero Valladolid

PVV1 - Datos Meteorológicos IQ051 Mes: enero - 2014

Situación: - VALLADOLID Tipo de equipo: VERTEDERO VALLADOLID

DIA	T.Máx.	T.Med.	T.Min.	LLuvia	V.Máx.	V.Med.	V.Mín.	Direccio	ЕТо	Hum.Má	Hum.Me	Hum.Mín
	°C	℃	°C	mm	Km/h	Km/h	Km/h	0	mm	%	%	%
01	8,39	6,83	5,13	4,10	48,52	16,44	3,52	208,1	0,09	98,33	94,84	89,72
02	11,34	9,05	7,15	16,28	46,77	16,62	3,52	221,8	0,08	97,69	94,88	86,85
03	10,76	9,32	7,16	6,96	43,84	16,06	2,94	227,4	0,18	96,82	93,08	81,92
0.4	7,41	4,43	0,34	8,98	68,39	26,61	5,86	244,5	0,29	96,37	89,49	77,22
05	8,53	5,14	0,99	0,16	43,85	13,96	1,77	216,3	0,16	98,92	92,56	82,89
06	9,96	8,31	6,81	0,08	49,11	14,65	2,36	196,1	0,57	97,83	86,62	76,08
07	10,79	8,73	6,99	4,67	25,73	9,30	1,19	184,4	0,27	98,05	91,55	84,64
0.8	11,44	8,67	6,77	0,16	16,38	5,31	0,02	154,2	0,75	96,44	75,64	50,45
09	12,77	8,88	4,84	0,00	18,14	3,73	0,02	153,3	0,84	85,34	61,32	48,95
10	9,62	7,17	3,83	0,00	8,77	3,34	0,00	105,2	0,39	92,95	79,23	70,97
11	11,11	4,60	-0,06	0,24	9,93	3,00	0,00	128,7	0,72	100,0	89,46	56,38
12	8,70	5,27	1,75	1,61	31,56	8,28	0,00	193,9	0,27	99,76	94,50	85,77
13	6,04	4,09	1,97	0,64	42,66	16,85	2,34	247,5	0,64	99,14	89,84	68,92
14	11,76	6,89	3,69	2,01	45,00	21,22	5,85	263,7	0,62	97,86	89,92	68,64
15	8,16	6,96	5,53	0,40	35,65	13,80	2,92	219,8	0,30	98,36	92,21	81,14
16	7,39	4,34	1,26	2,59	50,26	17,71	4,68	234,7	0,57	96,92	88,71	70,35
17	6,86	3,23	0,30	0,08	40,33	11,01	0,01	175,6	0,59	98,66	84,81	65,07
18	5,39	3,60	1,78	1,45	33,32	8,59	0,01	215,3	0,33	96,92	89,48	78,08
19	5,25	1,56	-0,26	7,01	40,92	12,40	0,01	258,3	0,27	100,0	90,96	64,25
20	6,65	1,85	-0,61	0,00	39,75	16,94	3,52	265,6	0,62	97,95	89,01	64,96
21	6,38	3,68	0,93	11,71	30,98	11,02	2,93	223,6	0,10	99,25	97,06	83,60
22	8,42	5,06	1,11	0,08	33,32	16,51	4,10	304,9	0,78	99,64	86,42	58,63
23	8,72	3,29	-1,28	0,08	23,97	9,63	0,01	289,2	0,92	96,40	83,69	61,55
24	10,23	4,31	0,22	0,00	43,84	16,79	5,27	276,4	0,85	100,0	89,66	69,00
25	13,84	7,96	4,44	0,08	38,58	18,84	4,69	293,0	0,99	99,71	87,22	63,93
26	8,88	5,81	1,20	0,16	43,85	14,93	0,01	252,6	0,33	99,89	95,76	88,28
27	7,79	4,60	0,78	0,08	59,63	27,48	9,95	270,7	0,95	96,13	84,56	64,44
28	7,94	2,74	0,08	5,75	85,92	24,53	5,86	249,2	0,26	97,42	91,46	71,68
29	6,81	2,34	-0,40	5,15	37,42	19,42	0,02	284,7	0,59	100,0	87,71	61,02
30	6,33	2,20	-1,75	0,00	42,10	20,60	1,19	282,9	0,95	93,00	83,32	64,32
31	8,74	5,53	2,08	0,00	37,42	18,45	7,04	263,7	0,50	97,97	91,42	79,47

T.Máx.	T.Med.	T.Min.	LLuvia	V.Máx.	V.Med.	V.Mín.	Direccion	ЕТо	Hum.Máx	Hum.Med	Hum.Min.
			Acumulad				Media	Acumulad			
°C	°C	°C	mm	Km/h	Km/h	Km/h	٥	mm	%	%	%
13,84	5,37	-1,75	80,51	85,92	14,65	0,00	229,2	15,77	100,0	88,27	48,95

Informe Mes Febrero 2014

INFORME DATOS

Plan de Vigilancia Ambiental Vertedero Valladolid

PVV1 - Datos Meteorológicos IQ051 Mes: febrero - 2014

Situación: - VALLADOLID Tipo de equipo: VERTEDERO VALLADOLID

DIA	T.Máx. °C	T.Med. ℃	T.Min. ℃	LLuvia mm	V.Máx. Km/h	V.Med. Km/h	V.Min. Km/h	Direccio	ETo mm	Hum.Má %	Hum.Me %	Hum.Mín %
01	8,20	5,40	0,10	0,00	27,80	13,70	0,03	252,8	0,00	100,0	84,42	64,67
02	6,60	1,90	-1,30	0,00	11,10	7,10	0,03	234,6	0,00	100,0	88,75	56,08
03	4,77	1,16	-1,22	2,42	50,87	17,64	1,78	225,3	0,44	100,0	90,20	61,36
04	7,56	3,87	1,10	7,42	65,48	19,72	2,36	208,3	0,38	97,44	90,28	77,02
05	7,38	5,26	3,08	1,21	67,23	23,65	2,36	243,6	0,88	92,80	82,44	66,47
06	13,70	7,84	4,27	5,16	72,49	23,78	4,12	207,3	1,01	96,68	85,78	56,21
07	6,80	3,76	0,29	0,56	51,46	20,89	5,87	228,1	0,34	97,33	89,98	73,68
08	7,22	5,39	1,38	9,22	67,82	25,70	6,46	239,8	0,69	96,85	85,21	63,67
09	7,61	2,72	0,33	11,63	66,65	15,81	2,37	199,1	0,08	99,31	93,83	78,96
10	5,33	2,67	-0,44	0,00	66,07	31,16	5,29	284,8	1,43	91,31	74,41	50,68
11	7,19	2,23	-0,67	5,00	48,53	13,97	2,95	234,4	0,24	100,0	95,45	86,50
12	8,61	4,00	-0,06	0,80	39,18	11,63	0,03	221,2	0,24	100,0	97,38	85,10
13	11,80	8,95	6,15	0,32	54,96	21,74	3,54	236,2	1,10	97,62	85,82	68,15
14	13,13	9,88	5,43	3,06	73,67	23,86	4,71	210,5	1,33	97,56	84,31	62,33
15	6,88	4,31	1,63	3,38	32,76	14,48	4,12	246,8	0,74	97,63	87,63	62,96
16	5,22	1,28	-2,31	0,16	21,66	6,34	0,03	213,1	0,61	100,0	91,34	68,13
17	9,04	2,81	-2,76	0,08	20,49	5,88	0,03	187,3	1,36	98,40	75,88	34,71
18	7,63	3,57	1,51	0,00	25,16	8,39	0,03	281,4	0,60	98,71	88,30	65,82
19	10,63	4,28	-1,12	0,08	23,99	6,79	0,03	268,2	1,46	100,0	82,87	55,16
20	10,66	6,38	2,15	2,20	42,70	14,02	2,37	230,9	0,54	99,35	91,24	78,31
21	7,40	3,37	-0,19	0,00	36,85	16,50	4,13	272,6	1,36	97,27	77,86	41,28
22	8,88	3,82	-0,12	0,24	26,92	10,97	0,04	233,6	0,78	99,49	84,83	54,25
23	12,78	5,65	-1,17	0,08	27,50	7,57	0,04	132,6	1,88	98,67	70,79	37,30
24	7,06	5,12	2,70	1,53	31,01	10,22	0,04	203,9	0,65	96,85	80,78	56,58
25	11,01	5,09	0,74	2,44	63,74	21,03	3,54	240,0	0,90	95,90	84,39	48,40
26	7,13	3,36	0,15	1,93	38,61	15,86	4,71	272,8	1,29	99,49	79,65	44,44
27	9,91	5,75	3,11	1,29	35,10	15,67	3,55	246,6	0,47	97,79	91,25	77,94
28	10,82	6,22	2,78	0,08	78,35	30,29	3,55	272,7	1,50	95,22	79,71	47,44

T.Máx.	T.Med.	T.Min.	LLuvia Acumulad	V.Máx.	V.Med.	V.Min.	Direccion Media	ETo Acumulad	Hum.Máx	Hum.Med	Hum.Min
°C	°C	°C	mm	Km/h	Km/h	Km/h	0	mm	%	%	%
13,70	4,57	-2,76	60,29	78,35	16,68	0,03	232,3	22,30	100,0	85,45	34,71

Informe Mes Marzo 2014

INFORME DATOS

Plan de Vigilancia Ambiental Vertedero Valladolid

PVV1 - Datos Meteorológicos IQ051 Mes: marzo - 2014

Situación: - VALLADOLID Tipo de equipo: VERTEDERO VALLADOLID

DIA	T.Máx. °C	T.Med. ℃	T.Min. ℃	LLuvia mm	V.Máx. Km/h	V.Med. Km/h	V.Mín. Km/h	Direccio	ETo mm	Hum.Má %	Hum.Me %	Hum.Mín %
01	11,11	6,72	3,49	4,67	60,82	24,43	8,80	260,1	0,46	98,69	92,28	80,12
02	10,76	8,76	6,94	0,08	47,38	24,21	9,39	263,2	0,79	96,58	90,70	79,35
03	7,84	4,36	0,94	0,32	72,51	34,91	12,90	276,4	1,50	90,22	77,64	57,15
04	7,21	3,86	-0,06	0,00	48,55	21,56	8,81	260,7	0,85	96,58	85,87	67,55
05	13,93	8,17	2,77	0,00	36,86	11,67	0,04	167,6	2,00	97,18	76,83	44,26
06	4,96	3,55	2,19	0,08	12,32	5,48	0,63	55,52	0,00	98,70	94,90	90,97
07	11,46	7,29	3,35	0,00	20,14	11,69	0,00	49,34	0,00	85,88	83,76	81,17
08	12,15	8,12	4,30	0,00	25,16	5,90	0,00	51,75	0,00	57,53	42,80	28,06
09	14,61	9,52	4,53	0,00	23,15	8,90	0,00	42,66	0,00	62,15	45,66	29,18
10	17,65	12,77	7,54	0,00	29,26	12,69	3,55	37,73	1,45	46,10	31,58	19,56
11	16,16	9,81	3,99	0,00	37,45	11,96	2,97	44,39	3,67	64,12	44,72	29,18
12	16,96	9,25	2,75	0,00	29,85	8,09	0,00	71,55	3,04	83,78	53,57	20,86
13	14,16	8,21	1,40	0,00	25,13	6,73	0,00	101,2	2,63	76,33	49,76	31,37
14	15,29	7,92	0,72	0,00	22,21	5,09	0,00	156,9	2,54	88,85	59,66	29,19
15	16,43	9,21	3,53	0,00	28,64	10,00	0,58	50,98	3,18	79,06	52,55	22,34
16	19,39	10,43	2,99	0,00	32,14	12,65	0,00	46,62	3,82	81,17	50,21	23,41
17	19,56	11,00	1,82	0,00	21,04	6,79	0,00	180,8	3,33	80,58	53,42	28,14
18	18,65	10,26	4,03	0,00	35,07	8,38	0,00	105,5	2,96	86,32	65,09	34,24
19	18,27	9,82	3,46	0,00	35,07	9,99	0,00	110,5	2,55	90,66	67,23	35,43
20	19,45	11,91	4,09	0,00	26,89	5,75	0,00	221,2	3,16	91,97	61,25	26,32
21	16,33	11,19	6,73	0,00	40,33	16,18	2,92	254,4	2,51	91,50	71,02	49,72
22	11,25	7,34	0,95	0,00	54,35	21,75	5,26	272,8	2,52	93,90	66,62	32,17
23	9,60	4,21	-0,91	0,00	31,56	12,51	0,59	281,5	2,34	95,17	63,46	32,02
24	9,74	5,43	1,14	3,06	50,85	15,49	1,18	250,3	0,74	95,35	77,70	59,34
25	9,78	3,86	0,42	3,35	82,41	27,54	3,51	275,6	1,13	96,03	81,64	56,53
26	11,19	4,41	-0,48	0,00	51,43	23,16	0,01	303,3	2,39	95,65	71,74	39,64
27	10,33	4,16	-1,69	0,08	35,65	8,17	0,01	248,8	2,16	96,05	69,40	32,12
28	12,42	6,53	2,00	0,08	37,99	7,61	0,01	145,0	1,32	89,31	68,11	42,23
29	9,51	6,96	4,15	2,66	30,40	7,63	0,01	98,29	0,56	91,00	80,34	60,31
30	13,49	8,65	5,43	0,08	33,90	9,92	1,18	205,7	2,12	97,20	75,23	39,73
31	14,38	9,56	5,92	0,48	41,50	10,61	1,18	168,4	1,86	93,31	74,94	51,77

T.Máx.	T.Med.	T.Min. ℃	LLuvia Acumulad mm	V.Máx. Km/h	V.Med. Km/h	V.Mín. Km/h	Direccion Media	ETo Acumulad mm	Hum.Máx %	Hum.Med	Hum.Min.
19,56	7,80	-1,69	14,94	82,41	13,61	0,00	175,5	57,58	98,70	68,12	19,56

Informe Mes Abril 2014

INFORME DATOS

Plan de Vigilancia Ambiental Vertedero Valladolid

PVV1 - Datos Meteorológicos IQ051 Mes: abril - 2014

Situación: - VALLADOLID Tipo de equipo: VERTEDERO VALLADOLID

DIA	T.Máx. °C	T.Med. ℃	T.Min. ℃	LLuvia mm	V.Máx. Km/h	V.Med. Km/h	V.Mín. Km/h	Direccio	ETo mm	Hum.Má %	Hum.Me %	Hum.Mín %
01	14,67	11,00	8,64	0,08	50,27	14,33	1,76	169,5	1,88	79,29	66,29	40,77
02	11,53	7,99	5,61	5,16	26,89	6,51	0,01	207,0	0,79	96,31	87,40	65,75
03	11,64	7,23	5,04	0,24	36,83	13,02	0,59	265,5	1,87	98,10	83,39	54,34
04	9,04	6,22	1,24	2,01	31,57	13,42	4,10	252,6	0,76	98,08	91,44	69,00
05	17,88	11,70	8,42	0,32	28,06	12,24	2,35	267,6	1,75	97,92	88,14	59,66
06	19,66	12,62	6,06	0,16	21,63	5,42	0,01	220,0	2,99	98,50	81,10	52,92
07	21,38	14,00	8,01	0,08	39,16	9,90	0,01	232,1	3,61	93,58	67,78	34,58
08	19,61	13,03	7,94	0,00	25,14	7,70	0,01	114,3	3,36	92,50	70,57	39,84
09	22,99	13,26	4,67	0,00	42,67	7,79	0,01	119,6	3,70	94,81	67,58	25,25
10	26,40	19,10	11,70	0,00	18,30	8,30	0,01	212,3	0,00	95,20	67,07	38,94
11	22,40	14,90	8,70	0,00	7,60	5,00	0,01	196,1	0,00	93,85	64,08	34,58
12	19,10	12,60	6,10	0,00	7,60	5,70	0,01	322,1	0,00	80,11	61,94	43,77
13	24,30	15,20	7,10	0,00	9,40	5,60	0,01	159,6	0,00	76,85	53,19	29,52
14	24,90	16,80	8,70	0,00	7,60	5,00	0,01	98,80	0,00	77,50	61,42	45,34
15	22,90	17,40	13,00	0,00	11,10	5,70	0,01	36,83	0,00	87,40	73,53	59,66
16	26,30	17,60	9,40	0,00	5,40	3,90	0,01	131,4	0,00	91,84	75,53	59,22
17	26,00	18,60	10,90	0,00	5,40	4,60	0,01	277,6	0,00	95,38	71,38	47,37
18	26,90	17,80	8,90	0,00	9,40	5,60	0,01	200,2	0,00	92,97	64,22	35,48
19	25,70	16,10	10,70	0,00	14,80	5,90	0,01	91,80	0,00	93,85	75,40	56,96
20	16,80	11,40	7,40	3,30	20,60	9,40	0,01	141,3	0,00	94,81	75,10	45,38
21	18,80	12,20	8,00	0,50	13,00	7,00	0,01	67,78	0,00	81,10	66,29	51,48
22	15,40	11,40	5,80	0,00	13,00	8,70	0,01	88,41	0,00	91,44	63,17	34,89
23	17,10	13,00	10,20	0,00	18,30	9,30	0,01	191,6	0,00	95,83	69,80	43,77
24	15,70	10,30	7,30	0,50	20,60	10,40	0,01	225,6	0,00	88,10	61,27	34,45
25	15,40	8,80	2,90	0,75	20,60	13,00	0,01	27,80	0,00	94,53	72,88	51,24
26	18,30	12,40	8,80	0,25	27,80	15,20	0,01	352,1	0,00	91,34	80,57	69,80
27	19,40	11,20	3,10	1,00	14,80	11,30	0,01	13,20	0,00	89,25	76,66	64,08
28	22,60	14,90	8,30	0,00	16,50	11,90	0,01	50,27	0,00	86,27	78,42	70,57
29	22,30	14,00	6,80	0,00	11,10	6,70	0,01	39,16	0,00	82,71	76,90	71,10
30	20,50	14,40	8,50	0,00	7,60	4,30	0,01	93,61	0,00	90,54	82,41	74,28

T.Máx. ℃	T.Med. °C	T.Min. ℃	LLuvia Acumulad mm	V.Máx. Km/h	V.Med. Km/h	V.Mín. Km/h	Direccion Media	ETo Acumulad mm	Hum.Máx %	Hum.Med	Hum.Min.
26,90	10,78	1,24	14,35	50,27	10,04	0,01	205,3	20,71	98,50	78,19	25,25

Informe Mes Mayo 2014

INFORME DATOS

Plan de Vigilancia Ambiental Vertedero Valladolid

PVV1 - Datos Meteorológicos IQ051 Mes: mayo - 2014
Situación: - VALLADOLID Tipo de equipo: VERTEDERO VALLADOLID

DIA	T.Máx.	T.Med.	T.Min.	LLuvia	V.Máx.	V.Med.	V.Mín.	Direccio	ЕТо	Hum.Má	Hum.Me	Hum.Mín
	°C	°C	°C	mm	Km/h	Km/h	Km/h	0	mm	%	%	%
01	21,00	13,45	4,91	0,00	22,81	7,91	0,02	245,7	4,20	97,80	67,63	29,75
02	18,57	10,73	5,11	0,08	25,73	8,23	0,02	57,56	4,06	97,57	66,93	30,36
03	17,32	10,45	3,77	0,00	32,16	12,38	2,94	55,14	3,97	89,89	63,06	34,71
04	22,07	12,48	3,19	0,00	22,81	6,87	0,02	58,88	4,34	95,69	47,77	11,30
05	26,44	16,63	5,72	0,00	26,90	5,72	0,02	196,8	5,10	73,83	37,78	15,38
06	24,34	17,18	12,18	0,00	34,50	9,67	0,02	251,9	4,90	68,68	40,04	12,27
07	25,77	18,07	11,98	0,00	22,23	6,30	0,02	203,4	5,09	83,47	54,31	28,11
08	25,68	17,14	9,29	0,00	20,48	7,18	0,61	108,7	4,71	87,49	57,84	24,80
09	26,34	18,37	10,64	0,00	21,06	7,36	0,02	110,5	5,10	78,44	52,60	27,44
10	25,45	18,43	9,94	0,00	26,90	8,06	0,02	227,5	5,37	92,52	56,01	25,27
11	21,61	15,21	8,21	0,00	24,57	7,93	0,61	289,8	4,42	96,61	56,66	11,71
12	21,95	12,83	5,43	0,00	32,16	8,97	0,02	108,7	4,81	96,14	62,71	22,16
13	16,37	10,09	4,08	0,00	33,33	12,51	2,36	53,58	4,40	84,61	56,28	27,27
14	21,34	11,45	1,73	0,00	27,49	12,18	2,36	51,68	5,14	92,57	50,17	16,18
15	23,22	13,52	5,21	0,00	32,17	13,62	4,12	49,28	5,19	91,39	53,35	21,66
16	23,34	14,01	5,95	0,00	40,35	15,47	3,53	49,79	6,44	67,25	36,49	9,60
17	22,51	13,45	5,22	0,00	32,17	14,16	4,12	52,22	5,84	75,22	42,76	15,23
18	24,11	15,20	5,18	0,00	28,08	9,10	0,03	174,5	5,88	78,86	42,17	15,06
19	18,43	13,34	6,94	0,16	53,21	16,55	0,03	235,4	4,65	92,91	51,95	27,47
20	16,93	10,23	3,96	0,00	33,93	9,63	0,03	214,5	3,47	97,19	59,97	24,77
21	13,89	8,97	5,44	13,03	59,64	15,93	0,03	192,3	2,04	97,10	75,78	43,34
22	14,24	8,44	5,54	6,45	50,88	18,08	4,13	236,0	1,36	93,77	82,31	42,42
23	15,10	9,88	6,49	0,40	41,53	15,46	4,13	262,1	3,44	93,61	68,18	38,55
24	17,30	10,70	4,08	0,00	22,83	7,69	0,04	220,6	4,24	87,75	57,59	28,64
25	16,68	10,37	3,15	0,00	35,69	8,71	0,04	225,7	4,10	98,37	65,75	27,22
26	17,46	10,55	2,63	0,00	35,69	6,78	0,04	240,1	3,84	90,54	57 , 97	28,41
27	19,41	12,99	7,20	0,24	32,18	8,79	0,04	194,4	4,27	90,56	59,46	28,93
28	18,15	12,04	9,57	6,00	35,10	11,00	0,04	201,9	2,36	95,70	79,83	40,53
29	17,76	12,80	6,50	0,00	33,94	9,83	0,04	217,6	3,20	94,00	71,08	51,12
30	18,79	12,94	8,85	0,08	29,26	10,87	1,79	73,09	3,95	92,72	64,00	33,35
31	17,05	10,88	5,43	0,40	33,35	12,56	1,79	48,03	3,07	92,94	69,09	42,41

T.Máx.	T.Med.	T.Min.	LLuvia	V.Máx.	V.Med.	V.Mín.	Direccion	ЕТо	Hum.Máx	Hum.Med	Hum.Min.
°C	℃	℃	Acumulad mm	Km/h	Km/h	Km/h	Media °	Acumulad mm	%	%	%
26,44	12,99	1,73	26,84	59,64	10,50	0,02	158,3	132,9	98,37	58,31	9,60

Informe Mes Junio 2014

Informe Meteorológico

Vertedero Valladolid

Estación: IQ051

Datos del mes 06/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	20.61	12.74	5.84	0	25.76	9.63	0.53	48.85	4.592	94.66	66.07	35,26
02	22.32	14.54	7.23	0	20.5	5.46	0	42.5	4.532	94.08	57.66	22.66
03	21.46	14.36	8.55	0	21.67	5.63	0.53	79.87	2.549	87.88	61.3	34.7
04	16.14	13.93	9.13	0	24.56	14.21	1.24	270	0	97.84	97.8	97.77
05	17.88	14.05	8.73	0	21.05	11.59	2.87	246.72	0.28	71.69	67.02	59.67
06	14.9	12.05	7.54	0	11.7	3.64	0.79	29.04	0.305	97.29	95.78	85.86
07	14.34	8.3	6.45	0	15.2	7.79	2.51	191.37	0.171	76.06	74.24	70.93
08	18.33	9.31	7.65	0	14.62	8.88	1.09	56.16	0.017	92.51	89.75	85.09
09	19.35	16.25	12.53	0	10.53	6.1	0.79	25.36	0.148	47.21	43.88	40.05
10	17.52	14.55	10.33	0	30.4	11.36	5.16	200.24	0.088	51.94	45.33	38.28
11	20.55	17.55	14.65	0	19.3	10.01	2.55	48.15	0.375	51.25	45.96	40.88
12	17.89	10.91	9.65	0	21.64	11.66	0.79	67.69	0.278	56.16	54.39	50.9
13	22.46	20.6	17.69	0	14.04	5.48	1.56	14.13	0.282	36.44	33.56	29.04
14	22.42	17.89	14.33	0	19.88	9.11	1.24	77.39	0.526	43.06	38.25	33.71
15	21.3	16.95	13.58	0	11.7	4.05	0.79	251.37	0.322	46.6	41.03	37.23
16	23.76	20.11	19.86	0	17.54	7.1	1.77	293.82	0.494	35.5	31.46	27.77
17	24.47	19.5	16.97	0	16.37	6.6	1.17	55.76	0.411	30.16	28.09	25.54
18	24.42	18.75	17.84	0	26.31	12.66	2.93	309.83	0.536	28.9	25.97	23.69
19	23.12	20.33	18.65	0	18.13	6.12	1.77	181.51	0.56	33.38	31.11	29.07
20	15.9	12.33	10.33	0	14.04	5.21	0.67	240.84	0.239	45.51	40.49	37.05
21	16.3	14.01	11.28	0	25.73	11.47	3.78	281.63	0.392	41.08	35.84	30.37
22	13.5	11.97	9.7	0	26.9	13.68	2.36	249.1	0.191	52.17	49.02	44.52
23	14.64	12.81	10.59	1.309	29.23	12.28	0.79	248.79	0.289	75.89	66.06	58.41
24	13.08	9.67	8.78	0	42.09	23.67	1.33	267.18	0.252	55.73	51.86	41.49
25	12.58	11.94	10.65	0	36.25	18.77	1.35	257.38	0.362	48.85	45.44	42.22
26	16.33	11.56	9.87	0	26.9	15.62	1.75	304.16	0.181	44.54	41.34	38.47
27	15.8	13.65	11.68	0	25.73	14.73	0.86	305.55	0.111	53.65	48.66	44.52
28	19.43	16.5	14.58	0	31.58	16.23	5.3	261.17	0.231	46.43	44.37	40.64
29	19.16	14.65	13.56	0	24.57	9.29	1.77	295.22	0.264	49.51	46.47	42.17
30	18.26	15.89	12.66	0	17.55	6.79	1.69	314.78	0.164	43.89	39.53	36.5

Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
24.47	14.59	5.84	1.309	42.09	10.16	0.0	304.65	19.142	97.84	51.26	22.66

Informe Mes Julio 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051

Datos del mes 07/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	24.9	19.1	15.3	0	25.4	18.3	12	270	0	90.3	48.8	67.77
02	22.7	16.1	13.5	0	24.3	14.8	8.3	123	0	87.84	68.8	58.25
03	21.2	16	14.1	0	20.1	9.4	5.9	150	0	92.85	79.8	77.71
04	27.7	19.8	12.5	0	24.9	13	7.2	176	0	77.24	58.8	47.54
05	29.9	22	15.2	0	24.9	16.5	7.8	153	0	71.69	69.02	59.67
06	20.7	17.4	15.9	0	20.8	18.3	9.8	134	0	97.29	75.78	65.88
07	22.9	17	11.4	0	24.9	9.4	5.4	131	0	76.06	58.24	40.94
08	26.9	18.8	10.4	0	26.2	11.1	7.8	173	0	92.51	91.75	85.06
09	22.3	16.8	11.4	0	24.9	11.1	8.5	186	0	77.21	58.88	40.04
10	23.3	16.3	9.6	0	26.2	11.1	8.1	207	0	51.94	45.33	38.25
11	25.4	17.9	9.2	0	25.4	13	7.2	210	0	51.25	45.96	40.88
12	23.2	17.1	11.5	0	24.9	9.4	7.2	199	0	56.16	41.39	30.9
13	22.46	18.2	11.64	0	14.04	5.48	1	189	0	66.44	31.56	29.02
14	31	23.8	14.7	0	26.4	7.6	5.7	210	0	73.06	52.25	33.73
15	35.5	25.5	15.5	0	21.9	5.4	5.4	155	0	96.6	60.03	37.24
16	37.5	28.2	17.7	0	24.3	9.4	4.4	148	0	95.5	69.46	27.71
17	36	28.1	19	0	21.2	16.5	5.4	135	0	80.16	60.09	25.53
18	31.8	24.4	18	0	22.5	14.8	8.7	128	0	88.9	52.97	23.65
19	21	17.3	15.1	0	19.3	9.4	7.6	96	0	63.38	40.11	29.06
20	25.4	18.2	12.4	0	23.8	14.8	7.2	117	0	45.51	39.49	37.04
21	27.5	19.8	11.8	0	24.3	7.6	10	168	0	61.08	44.84	40.38
22	31.2	22.3	13.4	0	25.6	5.4	5.2	204	0	52.17	49.02	44.56
23	34	24.1	14.1	0	23.8	7.6	5.2	159	0	75.89	50.37	39.66
24	33.2	25.3	17.5	0	25.6	11.1	5.2	108	0	55.73	42.86	41.47
25	33.3	24.3	16.5	0	24.3	11.1	6.5	80	0	78.85	48.44	42.26
26	34	25	16.7	0	23.2	13	6.7	88	0	74.54	53.34	38.49
27	34.4	25.6	17.1	0	25.6	9.4	6.9	118	0	53.65	48.66	44.58
28	30.1	22.7	16.4	0	24.9	11.1	7	14	0	46.43	44.37	40.63
29	25.2	19.3	13.5	0	26.2	13	8.1	139	0	49.51	46.47	42.16
30	60	28.24	18.44	0	19.87	8.47	0	154.13	2.433	100	41.95	25.64

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
Ī	60.0	21.15	9.2	0.0	26.4	11.22	0.0	151.98	2.433	100.0	53.96	23.65

Informe Mes Agosto 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051

Datos del mes 08/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	27.6	20.97	14.37	0	47.92	11.44	0	39.94	5.707	89.75	58.07	23.85
02	25.4	19.2	14	0	24.3	18.3	10.2	123	0	68.84	58.4	38.25
03	27.5	20.6	14.5	0	23.8	16.5	12.2	150	0	52.86	49.8	37.71
04	29.7	22.1	15.2	0	24.3	11.1	6.9	176	0	57.24	51.8	47.44
05	30.9	23.4	16.2	0	23.8	9.4	5.4	153	0	61.69	49.02	37.67
06	28.62	25.18	22.53	0	26.88	7.13	0	37.62	0.391	50.71	35.71	25.41
07	30.32	22.7	14.33	0	27.47	7.02	0	29.33	6.513	83.89	50.51	24.76
08	28.97	22.56	15.61	0	35.07	12.98	2.92	12.52	6.737	78.92	50.55	24.78
09	27.78	21.43	15.6	0	37.99	10.7	0	0.73	5.861	82.32	54.94	28.33
10	28.25	20.78	13.69	0	35.07	13.8	2.93	355.48	6.564	85.29	55.65	28.61
11	28.42	20.95	13.5	0	23.97	7.28	0.01	58.52	5.876	92.46	56.52	24.33
12	27.31	19.31	10.26	0	49.68	13.42	0.01	16.21	5.935	92.75	59.44	30.36
13	23.02	17.41	10.6	0	38.58	14.71	0.01	61.02	6.002	82.18	48.46	21.24
14	24.38	16.52	9.53	0	36.24	7.94	0.01	107.35	5.514	83.4	50.01	19.96
15	26.83	17.46	9.63	0	35.07	9.75	0.01	116.7	5.791	90.82	54.55	17.04
16	23.44	16.3	10.6	0	32.73	13.84	2.34	150.01	5.821	76.01	50.92	21.86
17	29.74	18.99	8.11	0	32.15	8.85	0.01	107.46	6.34	85.04	44.31	12.78
18	31.31	22.97	14.12	0	42.67	9.38	0.01	95.63	6.745	75.46	33.16	18.23
19	28.03	19.54	11.97	0	35.07	9.25	0.01	112.39	5.695	87.56	54.61	18.21
20	26.49	18.34	10.26	0	29.23	8.45	0.01	101.21	5.349	90.83	56.22	22.91
21	26.49	18.05	10.66	0	28.65	8.09	0.01	90.09	5.104	85.3	54.73	25.93
22	22.9	17.2	13.47	0	22.22	8.56	0.01	132.15	3.087	83.63	63.15	31.92
23	27.13	17.83	10	0	21.05	7.43	0.01	114.49	5.349	87.73	53.9	18.53
24	29.1	19.96	9.87	0	32.15	8.25	0.01	71.42	6.274	88.09	43.87	12.47
25	31.64	22.97	13.74	0	43.84	11.82	0.01	345.7	7.867	45.6	25.65	12.02
26	28.35	21.5	15.54	0	45.6	18.67	2.34	354.24	6.139	87.42	60.35	35.72
27	30.86	21.78	15.04	0	36.83	11.6	0.01	345.27	6.081	94.29	58.93	16.27
28	29.29	21.67	13.58	0	33.91	11.56	0.01	4.36	6.541	74.67	45.79	28.42
29	27.71	20.29	14.05	0	30.99	11.35	0.01	125.92	5.593	89.49	58.7	29.64
30	28.14	19.72	12.93	0	25.14	10.57	0.01	136.33	4.803	83.5	59.33	31.86
31	29.83	20.68	12.86	0	26.31	10.38	0.01	138.93	5.703	90.06	55.11	16.46

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %	
Ī	31.64	20.27	8,11	0.0	49.68	10.95	0.0	81.47	153.382	94.29	51.68	12.02	l

Informe Mes Septiembre 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051

Datos del mes 09/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	32.2	22.51	13.54	0	21.05	8.36	0.01	115.09	6.088	72.01	40.14	14.32
02	33.96	24.23	14.5	0	36.83	7.6	0.01	146.03	6.284	64.32	36.52	13.5
03	30.89	23.85	17.17	0	33.91	8.5	0.01	5.46	6.161	76.71	47.97	22.27
04	27.4	20.36	13.61	0	28.07	10.24	0.6	356.57	5.395	90.05	56.99	25.38
05	28.68	20.82	12.43	0	26.31	6.96	0.01	13.55	5.211	94.19	53.46	19.45
06	28.53	21.51	15.17	0	32.74	10.81	0.6	346.24	5.883	68.6	45.22	19.81
07	23.65	18.65	14.44	0	42.68	9.38	0.01	315.7	3.376	88.88	70.16	43.64
08	25.64	18.35	12.18	0	55.53	5.55	0.02	268.09	3.407	94.61	69.76	37.31
09	28.39	20.31	12.62	0	23.98	6.08	0.02	103.83	4.831	85.37	52.13	22.38
10	29.1	21.51	13.28	0	44.43	7.6	0.02	356.95	5.411	72.46	41.41	18.73
11	25.93	19.56	13.23	0	26.31	9.33	0.02	347.17	4.433	87.04	60.01	28.63
12	27.07	19.7	13.49	0	23.39	7.87	0.02	343.2	4.41	90.51	59.19	31.26
13	27.81	20.13	13.83	5.699	31.57	5.87	0.02	55.81	4.32	75.66	52.52	23.43
14	25.26	18.26	13.44	0	38.59	7.84	0.02	293.04	3.848	85.32	63.45	27.23
15	22.73	17.15	12.4	3.547	30.4	6.56	0.02	312.56	3.155	94.25	70.71	41.19
16	25.53	18.72	14.23	0	54.95	11.04	0.02	244.34	3.746	82.46	54.78	23.9
17	23.01	16.82	13.53	0.869	42.09	11.22	0.02	287.28	2.807	87.11	70.03	44.5
18	23.2	16.65	11.2	0	44.43	11.61	0.02	287.27	4.067	88.54	62.29	30.45
19	21.41	15.57	12.99	18.567	41.51	7.33	0.02	272.56	1.823	91.04	76.9	48.46
20	21.56	16.15	11.65	3.039	19.89	4.25	0.02	287.77	2.638	94.34	74.62	40.74
21	24.6	16.98	11.38	0.955	25.15	5.92	0.02	139.75	3.212	91.82	68.45	32.77
22	21.27	16.3	12.78	4.254	23.39	5.94	0.02	151.35	2.981	95.35	76.19	40.69
23	20.49	14.73	11.54	37.09	32.16	5.54	0.02	152.64	2.087	94.26	80.56	51.42
24	18.89	13.26	9.95	0.087	25.15	10.23	1.19	139.64	2.989	92.48	68.14	32.73
25	20.1	12.75	7.28	0	23.39	9.12	1.77	142.53	3.357	90.68	66.5	29.4
26	22.83	14.02	7.33	0	15.8	6.07	0.02	133.98	3.391	95.45	64.04	24.17
27	23.73	14.93	8.18	2.344	34.5	6.95	0.02	155.82	2.937	92.51	68.53	34.29
28	18.95	15.81	13.19	5.864	14.04	4.59	0.02	275.16	1.763	95.94	83.29	60.93
29	20.45	15.83	11.29	0.087	15.8	3.51	0.02	341.63	1.931	95.53	75.51	47.81
30	23.08	16.23	11.44	0	15.8	6.23	0.02	135.9	3.17	96.31	72.73	39.93

Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media º	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %	
33.96	18.06	7.28	82.402	55.53	7.6	0.01	324.3	115.112	96.31	62.74	13.5	ı

Instrumentación Quimisur

Informe Mes Octubre 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051

Datos del mes 10/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	23.9	16.37	10.3	0.087	24.56	8.42	0.02	135.61	3.39	96.43	71.07	34.32
02	25.29	17.16	12.13	0	26.32	6.59	0.02	125.76	3.184	92.27	68.42	29.88
03	24.18	17.32	12.01	0	22.22	6.36	0.02	97.19	3.402	84.88	59.79	28.45
04	22.62	16.35	10.47	0	26.9	6.66	0.02	344.83	3.124	82.1	59.92	26.9
05	21.83	14.3	9.46	0	23.98	8.65	0.02	120.49	2.916	91.77	70.14	37.41
06	20.23	13.78	8.92	0	36.25	13.68	2.34	347.64	2.989	94.74	73.33	40.11
07	20.03	15.62	12.04	0.087	37.41	14.36	1.77	333.96	2.834	94.1	71.55	42.28
08	20.53	16.36	14.46	8.221	54.37	17.8	4.11	306.48	1.152	93.82	82.83	60.93
09	16.08	14.44	12.18	8.021	33.33	11.42	0.02	324.24	1.297	94.91	83.94	59.28
10	18.73	13.97	11.37	0	18.71	4.29	0.02	295.87	2.072	95.4	80.28	46.03
11	19.15	14.28	11.44	6.692	26.32	5.87	0.02	267.17	2.247	93.63	73.54	40.91
12	15.5	11.89	10.21	5.835	36.84	9.49	0.02	287.94	0.948	95.64	86.39	59.56
13	14.24	11.11	8.99	2.519	33.33	10.46	0.02	322.94	0.984	95.99	87.54	64.83
14	14.17	10.43	8.68	1.823	33.33	7.8	0.02	331.49	1.39	95.18	82.75	53.21
15	17.45	12.53	9.22	2.344	39.75	11.87	1.19	295.35	0.783	96.92	90.3	76.75
16	19.27	16.29	14.13	0.261	54.38	19.26	3.53	298.5	2.217	93.04	79.36	58.13
17	21.96	15.89	11.4	0	35.68	11.08	0.03	296.65	3.056	93.95	73.64	43.62
18	24.33	17.25	12.07	0	29.83	8.04	0.03	290.27	3.345	85.54	62.88	30.35
19	24.69	17.38	11.32	0	11.72	4.31	0.03	135.6	2.612	83.9	62.81	37.75
20	26.55	17.65	11.02	0	12.3	4.43	0.03	71.23	2.821	82.27	59.09	24.99
21	26.18	17.85	10.9	0	25.16	7.21	0.03	339.72	3.446	86.29	60.07	26.32
22	19.42	14.06	9.32	0.087	20.48	5.82	0.03	143.11	2.365	94.93	66.55	28.05
23	22.15	12.91	5.28	0	12.3	3.18	0.03	147.89	2.053	81.64	57.1	30.68
24	23.52	15.92	9.6	0	14.64	2.41	0.03	229.69	2.14	80.67	58.94	33.27
25	24.69	16.43	9.53	0	13.47	2.98	0.03	123.98	2.348	92.21	61.89	29.24
26	25.53	16.71	9.54	0	11.13	3.59	0.03	139.75	2.47	79.9	52.09	24.58
27	23.99	15.35	7.83	0	11.72	4.14	0.03	146.74	2.531	86.09	54.68	24.42
28	21.58	14.16	6.56	0	9.96	3.05	0.03	174.79	2.179	88.3	59.76	32.86
29	24.72	16.42	10.6	0	14.05	3.34	0.03	179.05	2.22	78.26	54.11	27.1
30	25.38	16.04	8.16	0	11.13	2.16	0.03	211.95	2.196	84.46	53.76	25.26
31	24.73	15.45	8.24	0	37.43	4.18	0.03	237.05	2.509	76.23	51.8	20.1

Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
26.55	15.22	5.28	35.977	54.38	7.51	0.02	257.37	73.22	96.92	68.07	20.1

Informe Mes Noviembre 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051

Datos del mes 11/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	19.7	14.66	9.14	0.348	17.56	5.67	0.03	311.42	1.862	85.61	61.67	45.36
02	17.89	12.53	7.76	0.521	45.03	9.98	0.03	345.91	1.726	93.72	77.01	46.65
03	12.77	9.41	6.4	12.863	59.64	17.16	1.2	316.63	0.67	95.81	86.57	62.74
04	9.28	5.72	2.67	1.128	41.52	20.17	4.79	21.84	1.147	96.25	83.98	62.35
05	11.26	5.76	1.31	0	33.93	16.99	7.63	36.21	1.546	93.99	78.01	51.28
06	10.07	6.4	1.87	0.174	33.93	11.92	0.03	334.27	0.734	95.71	89.09	73.87
07	12.42	9.62	5.26	1.303	41.53	14.21	4.12	348.61	1.242	95.83	82.14	55.19
08	10.44	6.54	3.01	3.3	39.18	12.14	0.03	322.06	0.648	95.92	88.51	71.87
09	9.46	5.17	2.28	0.087	36.84	13.63	0.04	19.48	1.058	97.57	85.31	57.42
10	8.74	3.81	-1.15	8.526	31.59	8.93	0.04	297.38	0.714	99.63	92.81	66.62
11	10.38	7.58	5.71	4.167	43.87	15	3.54	308.34	0.477	98.35	91.68	74.42
12	11.06	8.37	6.45	1.39	42.7	13.54	0.04	322.17	0.675	96.38	89.42	73.5
13	15.12	11.45	8.04	11.527	48.54	14.1	2.38	283.43	0.61	94.04	84.8	73.18
14	11.85	8.41	5.58	3.126	40.95	13.71	2.38	327.34	0.82	95.36	86.64	63.19
15	8.25	6.16	4.6	3.386	50.88	20.99	5.89	332.56	0.349	94.39	90.3	81.49
16	9.6	6.93	4.84	0.781	48.55	21.56	4.72	333.69	0.835	94.56	88.28	73.21
17	9.95	7.01	3.88	0.868	41.54	14.7	3.55	356.25	1.092	95.13	83.56	63.33
18	9.35	5.19	1.58	0	13.49	4.53	0.04	298.59	0.704	97.94	88.68	72.98
19	12.1	8.17	5.15	1.303	19.33	5.4	0.04	186.25	0.417	97.89	91.05	77.04
20	17.58	13.14	10.28	0	23.42	6.82	0.04	193.61	1.501	84.07	71.54	60.58
21	16.26	10.82	5.67	0	12.32	5.02	0.04	166.1	1.135	94.36	80.85	64.5
22	19.13	12.92	6.95	0.261	13.49	3.51	0.04	189.83	1.138	95.06	77.11	56.65
23	13.28	11.78	10.34	2.605	22.84	6.45	0.04	204.06	0.222	95.44	84.52	66.5
24	15.43	11.23	8.58	0	16.41	6.41	0.04	134.39	1.033	96.49	87.96	68.54
25	12.32	9.48	6.99	0.174	18.75	5.08	0.04	9.39	0.368	98.07	94.93	81.75
26	10.51	8.05	5.32	0.087	14.07	3.45	0.04	187.97	0.598	97.78	88.61	71.31
27	10.4	6.36	2.67	0.696	45.63	9.93	0.04	217.72	0.595	95	85.34	70.71
28	10.75	8.22	5.91	0	49.72	12.94	0.05	225.11	0.906	93.83	79.35	63.71
29	9.5	7.84	5.72	3.126	37.45	10.48	1.22	133.19	0.088	95.08	91.8	88.32
30	13.88	10.4	8.72	8.331	56.74	14.95	1.8	131.33	0.861	97.19	87.75	74.64

Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %	
19.7	8.64	-1.15	70.078	59.64	11.31	0.03	308.08	25.771	99.63	84.98	45.36	1

[iq] Instrumentación Quimisur

Informe Mes Diciembre 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051

Datos del mes 12/2014 - INFORME MES

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
01	12.83	8	3.08	0	34.53	11.44	0.63	65.77	1.365	94.24	77.31	54.76
02	10.49	6.64	3.33	0.434	28.69	7.02	0.05	68.51	0.84	91.51	79.29	58.93
03	6.5	4.96	2.79	0	26.93	7.72	0.05	135.26	0.42	93.46	86.24	76.94
04	6.81	4.63	3.11	0	21.67	7.36	1.22	36.5	0.559	96.05	87.85	68.93
05	8.49	3.71	0.6	0.087	18.75	7.39	0.05	48.61	0.801	97.1	84.11	60.67
06	7.27	2.97	-1.37	0.087	39.2	9.47	0.05	69.74	0.819	95.89	81.65	62.92
07	8.93	3.37	-0.73	0	20.5	5.13	0.05	356.07	0.804	96.71	81.39	58.12
08	8.76	3.24	-1.74	0.174	26.93	8.83	0.05	6.56	0.897	99.19	86.64	70.11
09	8.51	3.57	0.12	0	26.35	7.03	0.05	76.95	0.856	93.67	79.75	56.23
10	9.34	2.59	-2.36	0.174	12.91	3.27	0.05	340.17	0.811	99.25	87.65	62.67
11	5.37	1.91	-0.84	0.26	11.15	2.63	0.05	312.36	0.493	99.01	96.37	86.97
12	6.21	1.88	-1.61	0.26	29.86	6.49	0.05	288	0.526	100	96.26	82.05
13	9.67	6.51	2.92	4.775	26.93	8.86	1.22	246.86	0.455	97.03	86.38	72.65
14	7.92	6.22	5.21	1.998	24.6	7.68	0.63	149.22	0.07	98.1	95.08	85.07
15	7.98	4.56	1.94	0.174	30.44	10.02	0.05	102.33	0.95	93.54	80.62	38.03
16	12.46	6.82	3.65	0.608	33.95	10.08	0.05	32.26	0.763	98.89	88.53	63.23
17	8.42	4.45	1.21	0.174	21.09	6.02	0.05	347.56	0.5	99.04	95.36	87.29
18	8.51	5.06	2.38	0.174	10.57	2	0.05	132.11	0.58	99.43	93.85	77.15
19	3.27	2.46	1.21	0.435	12.32	2.88	0.05	123.96	0.203	100	99.94	99.43
20	3.35	1.61	0.42	0.087	9.99	2.22	0.05	165.82	0.288	100	99.96	99.71
21	6.44	3.34	0.58	0.174	14.08	3.36	0.05	145.25	0.461	100	99.79	98.84
22	7.58	2.66	-0.84	0.174	14.66	4.14	0.05	143.89	0.399	100	99.16	92.22
23	3.03	0.15	-1.93	0.535	11.74	1.61	0.05	353.6	0.306	100	100	99.99
24	2.49	0.02	-2.47	0.377	12.32	0.92	0.05	152.21	0.289	100	100	100
25	3.83	1.42	-0.46	0.188	12.32	2.96	0.05	306.23	0.316	100	100	99.84
26	5.72	3.47	0.03	0.094	15.25	3.4	0.05	51.14	0.369	100	99.26	94.49
27	5.54	3.02	0.67	0.094	42.13	16.27	0.05	350.33	0.42	100	97.08	87.68
28	7.96	3.86	-0.58	0.566	49.72	19.21	1.8	69.73	0.694	98.17	87.69	62.8
29	3.81	-0.35	-3.1	0	31.02	12.46	0.05	133.61	1.166	81.62	64.79	34.37
30	5.45	0.01	-3.88	0	26.93	8.57	0.05	127.11	1.162	75.33	56.33	39.47
31	9.1	0.5	-5.72	0	12.91	4.08	0.05	13.48	0.885	94.69	74.08	42.3

Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media o	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
12.83	3.33	-5.72	12.103	49.72	6.79	0.05	65.12	19.467	100.0	88.46	34.37

[q] Instrumentación Quimisur

Informe Anual 2014

Informe meteorológico

Instrumentación Quimisur

Estación: IQ051 Datos del año 2014

	Temp. Máxima °C	Temp. Media °C	Temp. Minima °C	Lluvia mm	Vel. Máxima Km/h	Vel. Media Km/h	Vel. Minima Km/h	Dirección Media °	ET mm	Humedad Máxima %	Humedad Media %	Humedad Minima %
Enero	13.84	5.37	-1.76	80.504	85.92	14.65	0	241.57	15.757	100	88.27	48.96
Febrero	13.7	4.57	-2.76	60.301	78.35	16.68	0	234.07	22.29	100	85.45	34.71
Marzo	19.56	7.8	-1.69	14.937	82.41	13.6	0.41	325.51	57.521	98.71	68.12	19.56
Abril	25.65	12.06	-0.04	14.21	52.61	10.08	0.41	275.93	90.907	98.5	69.35	11.76
Mayo	26.44	13	1.73	26.858	59.64	10.5	0	339.32	132.974	98.37	58.29	9.6
Junio	24.47	16.81	5.84	1.309	42.09	10.15	0	305.39	18.172	97.84	51.35	22.66
Julio	37.5	21.07	9.2	0	33.9	11.14	0	149.59	9.527	97.29	53.46	16.78
Agosto	31.64	19.93	8.11	0	49.68	10.51	0	66.35	181.489	94.29	52.63	12.02
Septiembre	33.96	18.06	7.28	82.402	55.53	7.6	0.01	324.3	115.112	96.31	62.74	13.5
Octubre	26.55	15.24	5.28	35.977	54.38	7.51	0.02	262.75	73.444	96.92	68.02	20.1
Noviembre	19.7	8.64	-1.15	70.078	59.64	11.31	0.03	308.08	25.771	99.63	84.98	45.36
Diciembre	12.83	8	3.08	0	34.53	11.44	0.63	65.77	1.365	94.24	77.31	54.76

MAX	MED	MIN	SUM	MAX	MED	MIN	MED	SUM	MAX	MED	MIN
°C	°C	°C	mm	Km/h	Km/h	Km/h	°	mm	%	%	%
37.5	12.55	-2 76	386 576	85 92	11 26	0.0	300.61	744.329	100.0	68 33	9.6

- 3.6.2. PVV2 Chimenea 1
- <u>3.6.3. PVV3 –Chimenea 2</u>
- <u>3.6.4. PVV4 Chimenea 3</u>
- 3.6.5. PVV5 Chimenea 4

Los datos correspondientes con estos puntos de vigilancia son mostrados en la siguiente tabla.

PUNTO 1- LINEA 1	Pozo-1	Pozo-3	Pozo-5	Pozo-7	Pozo-9	Pozo-1	Pozo-3	Pozo-5	Pozo-7		Pozo-1	Pozo-3
MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	OINIO	JULIO	AGOSTO	SEPTIEMBR	8	BR	DICIEMBRE
Concentración de CH4 (%)	115.0	50.0	101.0	71.0	1000	94.0	52.0	121.0	0,00	7.0	50.0	115.0
Concentración de NH3 (nom)	0.3	0.3	0.5	0.2	0.3	0.7	0.3	0.2	0.1	0.5	0.2	0.7
Concentración de HCL (ppm)	V	₽	\ \ \	<1	1>		₹	7	₽	-	V	V
Concentración de Mercaptanos (ppm)	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.
Concentración de COV's (g/m3N)	390,0	380,0	410,0	420,0	390,0	410,0	420,0	430,0	410,0	400,0	380,0	430,0
Concentración de CO (ppm)	17,0	5,0	20,0	10.0	0.0	18,0	0.0	0.0	15,0	0,0	17.0	19,0
Concentración de CO2 (%)	12,0	10,0	12,0	11,0	13,0	11,0	11,0	12,0	10,0	13,0	12,0	12,0
Concentración de O2 (%)	9'0	2.0	0,5	9'0	0,3	0,4	0,4	9'0	0,5	6,0	6'0	0,3
PUNTO 2- LINEA 1	Pozo-2	Pozo-4	Pozo-6	Pozo-8	Pozo-10	Pozo-2	Pozo-4	Pozo-6	Pozo-8	Pozo-10	Pozo-2	Pozo-4
MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	AGOSTO SEPTIEMBR		OCTUBRE NOVIEMBR DICIEMBRE	DICIEMBRE
Concentración de CH4 (%)	58.0	54.0	52.0	54.0	60.0	56.0	52.0	50.0	54.0		56.0	68.0
Concentración de SH2 (ppm)	78.0	115,0	81,0	60,0	153,0	086	0'09	101,0	97.0	75.0	12,0	0.6
Concentración de NH3 (ppm)	0.4	9.0	0.4	3.0	0,4	0.5	2.0	0,4	9.0	9.0	2.0	2.0
Concentración de HCL (ppm)	· .	-	<1	<1	\ \	V	<1	٧,	1>	>1	<1	-
Concentración de Mercaptanos (ppm)	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.
Concentración de COV's (g/m3N)	420,0	390,0	420,0	425,0	390,0	420,0	426,0	428,0	410,0	415,0	417,0	423,0
Concentración de CO (ppm)	20,0	0.0	0,6	22,0	29,0	23,0	30,0	0.0	18,0	23,0	24.0	23.0
Concentración de CO2 (%)	12,0	12,0	10.0	10,0	11,0	12,0	13,0	11,0	10.0	10,0	12,0	12,0
Concentracion de O2 (%)	0,0	8,0	0,0	0,0	8,0	4,0	0,0	0,0	4,0	4,0	5,0	4.0
PUNTO 3- LINEA 2	Pozo-1	Pozo-2	Pozo-3	Pozo-4	Pozo-5	Pozo-6	Pozo-7	Pozo-8	Pozo-9	Pozo-10	Pozo-1	Pozo-2
MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	OINIO	JULIO	AGOSTO	SE	ŏ	NOVIEMBR DICIEMBRE	DICIEMBRE
Concentración de CH4 (%)	58,0	26,0	54,0	58,0	54,0	52,0	58,0	52,0	26,0	58,0	52,0	64.0
Concentración de SH2 (ppm)	0'2	0,76	5,0	78,0	0'06	102,0	84,0	53,0	82,0	76,0	97,0	93.0
Concentración de NH3 (ppm)	0,4	0,2	9,0	9,0	0.3	2,0	0,3	0,5	0,4	0,3	0,2	0,3
Concentración de HCL (ppm)	V	7	<1	·	V	V	<1	₹	<	·	×1	V
Concentración de Mercaptanos (ppm)	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.
Concentracion de COV's (g/m3N)	423,0	380,0	430.0	0.014	400,0	390,0	0,024	410,0	400,0	380,0	425,0	426,0
Concentration de CO (ppm)	2,0	12.0	44.0	44.0	420	0,02	14.0	0,0	42.0	1100	14.0	42.0
Concentración de O2 (%)	0,8	0,3	6,0	0,7	0,8	1,1	1,1	0,8	1,2	0,4	0,4	0,5
PUNTO 4- LINEA 3	Pozo-1	Pozo-2	Pozo-3	Pozo-4	Pozo-5	Pozo-6	Pozo-7	Pozo-1	Pozo-2	Pozo-3	Pozo-4 Pozo-5	Pozo-5
MES	ENERO	FEBRERO	MARZO	ABRIL	MAYO	OINIO	JULIO	AGOSTO	SEPTIEMBR		NOVIEMBR	DICIEMBRE
Concentración de CH4 (%)	0'99	54,0	20'0	52,0	26,0	52,0	54,0	54,0	56,0	50,0	54,0	67.0
Concentración de SH2 (ppm)	58,0	123,0	21,0	56,0	21,0	90,0	74,0	72.0	65,0	70.0	0,96	0.06
Concentración de NH3 (ppm)	0,2	0,2	0,4	0,3	0,2	0,3	0,3	0,4	0,4	0,2	0,4	0.3
Concentracion de HCL (ppm)			1>			V .	1>		1>	V	- 1	
Concentracion de Mercaptanos (ppm)	N-detec.	N-detec.	N-detec.	N-detec.	N-derec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-detec.	N-defec.
Concentracion de COV s (g/msin)	0,014	420,0	0,024	430,0	390,0	0.000	360,0	400,0	410.0	400,0	390,0	0,214
Concentración de CO (ppm)	44.0	12.0	0,0	0,00	0,0	44.0	0,0	0,0	12,0	0,0	10,0	42.0
Concentración de O2 /921	200	200	0.0	000	1.1	200	000	200	0.40	0.00	200	0.50

3.6.6. PVV6 – Emisiones Sonoras.

No procede la evaluación de las Emisiones Sonoras para el Año 2014, de acuerdo a lo dispuesto en el REGLAMENTO MUNICIPAL SOBRE PROTECCIÓN DEL MEDIO AMBIENTE CONTRA LA EMISIÓN DE RUIDOS Y VIBRACIONES del Ayuntamiento de Valladolid, con Fecha de publicación en el BOP del 27-2-2002.

3.6.7. PVV7 – Medición Inmisiones.

Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa APPLUS NORCONTROL, S.L.U., siendo Organismo de Control Autorizado por la Junta de Castilla y León según resolución del BOE nº32 del 6-2-96.

Las mediciones realizadas en este punto de vigilancia, se encuentran en el informe con número de Expediente:

Nº: P-070789 34401 IRPM10

El informe se muestra a continuación.

Applus Norcontrol, S.L.U.

José Luis Arrese, 32 47014 - Valladolid T. 983373256 F 983332955

Informe de Inspección Reglamentaria de Calidad del aire

Fechas de inspección: 20.10.2014 al 22.10.2014 Expediente: P-070789_34401_IRPM10

Edición 01

FCC VALLADOLID

Instalación: PLANTA DE RECUPERACIÓN Y COMPOSTAJE DE RESIDUOS URBANOS Y

VERTEDERO DE RESIDUOS NO PELIGROSOS.

Atn.: D. Javier Casado

Carretera de León Km 198 C.P 47050

(VALLADOLID)

Fecha: 07/01/2015 Elaborado por: Applus Norcontrol S.L.U. Fecha: 07/01/2015 Aprobado por: Applus Norcontrol S.L.U.

David Sanz Zarzuela Inspector medioambiental Castilla Y León Santiago Rodríguez Gutiérrez Gerente de Línea de Negocio de Inspección Medioambiental y Laboratorio

Este documento y los anexos en él referenciados tienen paginación independiente con indicación del número total de páginas en cada uno de ellos (tipo Página X de Y)

Garantía de Calidad: Applus+, garantiza que este trabajo se ha realizado dentro de lo exigido por nuestro Sistema de Calidad y Sostenibilidad, habiéndose cumpildo las condiciones contractuales y la normativa legal.

En el marco de nuestro programa de mejora les agradecemos nos transmitan cualquier comentario que consideren oportuno, dirigiéndose al responsable que firma este escrito, o bien, al Director de Calidad de Applus+, en la dirección: satisfaccion.cliente@appluscoro.com

Este documento no deberá reproducirse ni total ni parcialmente sin la aprobación, por escrito, de Applus Norcontrol y del cliente.

A CORJÁN - ALBACETE- ALICANTE - ASTURIAS - BARCELONA--BILBAO - CÁDIZ - CASTELLÓN - CIUDAD REAL - CORDOBA - GRANADA - HJELVA - JAÉN - LAS PALMAS - LEÓN -LOGROÑO - LUGO - MADEID - MÁLAGA - MÉRIDA - MURCIA - ORENSE - PALMA - PAMPLONA - SAN SEBASTIÁN - SANTANDER - SEVILLA - TENERIFE - TOLEDO - VALENCIA -VALLADOLID - VIGO - VITORIA - ZARAGOZA

Índice

Descripción de los trabajos

1.	Objeto	. 3
2.	Datos generales de la empresa de control e inspección	. 3
3.	Datos generales de la empresa	. 4
4.	Datos de la actividad	. 4
5.	Subcontratación de ensayos	. 5
6.	Plan de muestreo y análisis	5
7.	Resultados	. 7
8.	Criterios de aceptación	9
	8.1. Valores promedio	. 9
9	Conclusiones	9

Anexos

ANEXO I Referencia de los procedimientos internos de inspección

ANEXO II Localización de la instalación y los puntos de medida.

ANEXO III. Resultados de Laboratorio

ANEXO IV Condiciones climáticas y rosa de los vientos.

AXEXO V Relación de equipos utilizados.

ANEXO VI Fotos

Applus Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1• Página 2 de 10

1. Objeto

El objeto del presente informe es presentar la metodología y los resultados de la Inspección Reglamentaria de calidad del aire solicitada por **"FCC VALLADOLID"** y realizada para declarar conformidad a la inmisión de partículas de PM10 de la instalación "Planta de Recuperación y Compostaje de Residuos Urbanos y Vertedero de Residuos no Peligrosos" sita en la Ctra. De León Km 198, en el término municipal de Valladolid, de acuerdo a la legislación aplicable.

2. Datos generales de la empresa de control e inspección

	DATOS GENERALES
Razón Social:	APPLUS NORCONTROL, S.L.U
	Nacional VI, Km. 582.
	15.168 Sada - A Coruña
	Tfno: 98 101 45 50 Fax: 98 101 45 50
Acreditaciones:	Organismo de Control Autorizado por la Junta de Castilla y León según resolución del BOE nº32 de 6-2-96
Dirección Técnica:	Fernando Solórzano Miranda

	ENTIDAD DE INSPECCIÓN	
Delegación:	Applus Norcontrol - CyL	
Dirección	Avda. Jose Luis Arrese nº32 Bajo 47014 Valladolid Tfno: 983 37 32 56 Fax: 983 33 29 55	
Responsable Técnico:	Déborah Rull Solís (Coordinador de Control Ambiental)	
Trabajos Realizados:	Inspección Reglamentaria de Calidad del Aire	
Inspector/es:	 D. David Sanz Zarzuela en calidad de inspector Dña. Yolanda González Cámara en calidad de inspectora. Dña. Raquel Sanz Villarreal en calidad de inspectora en prácticas. 	

APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1 Página 3 de 9

3. Datos generales de la empresa

Nombre: FCC VALLADOLID

Domicilio de la instalación inspeccionada: Carretera de León Km 198 C.P 47050

(Valladolid)

Actividad: PLANTA DE RECUPERACIÓN Y COMPOSTAJE DE RESIDUOS URBANOS Y

VERTEDERO DE RESIDUOS NO PELIGROSOS. **Persona de contacto**: D. Javier Casado.

CIF: A 28037224

CLASIFICACIÓN SEGÚN C.N.A.E 2009.: 3821 Tratamiento y eliminación de residuos no

peligrosos

4. Datos de la actividad

El proceso de trabajo de la instalación es el siguiente:

La **actividad principal** de esta empresa es el tratamiento, recuperación y compostaje de los residuos sólidos urbanos.

DÍA DE INSPECCIÓN	Del 20.10.2014 al 22.10.2014
Nº DE PUNTOS DE MEDIDA	2 PUNTOS, SITUADOS SEGÚN LA ROSA DE LOS VIENTOS
Nº DE HORAS DE TRABAJO AL DIA	24 horas/ día

APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1• Página 4 de 9

5. Subcontratación de ensayos

NOMBRE: Laboratorio Análisis Químicos de SADA
DIRECCIÓN: Ctra. N-VI, Km 582 en Sada (A Coruña).
TFNO: 981 014 500 FAX: 981 014 550
EXPEDIENTE DE ACREDITACIÓN: № 76/LE201

6. Plan de muestreo y análisis

A continuación se detallan los datos relativos al muestreo.

INFORMACIÓN PRELIMINAR				
ACTIVIDAD DE LA INSTALACIÓN	Recuperación y compostaje de residuos urbanos.			
HORARIO DE FUNCIONAMIENTO	24h/día			
FECHAS DE MUESTREO	Del 20.10.2014 al 22.10.2014			
OBSERVACIONES				

Los resultados se obtuvieron a partir del análisis de muestras que se recogieron en "2" puntos de muestreo ubicados en las instalaciones de FCC VALLADOLID "PLANTA DE RECUPERACIÓN Y COMPOSTAJE DE RESIDUOS URBANOS Y VERTEDERO DE RESIDUOS NO PELIGROSOS, ubicada en la Carretera de León Km 198 C.P 47050(Valladolid)

La selección de los puntos se realizó teniendo en cuenta lo indicado tanto en la legislación aplicable (Real Decreto 102/2011) como en el procedimiento interno con referencia C6-002001.

Tal y como se indica en el procedimiento C6-002001 se establece un tiempo mínimo de 2 días consecutivos para los controles de partículas, siempre y cuando no se aplique algún documento normativo o legislativo que marque otro criterio.

La selección del lugar de muestreo: "La selección de las zonas donde se instalarán los captadores debe estar basada en el criterio de buscar las zonas de máximo impacto de las emisiones de la instalación en relación con la presencia de las áreas próximas más sensibles, entendiendo como tales, zonas de viviendas, núcleos habitados, ecosistemas naturales de especial relevancia, etc."

Para la elección de la zona de muestreo se deberá tener en cuenta además posibles criterios que se incluyan en la legislación aplicable como son en este caso los puntos de luz y los posibles hurtos próximos a la instalación, mediante previa prescripción del cliente.

"En cualquier caso la selección del emplazamiento se realizará de acuerdo a los siguientes criterios:

-Ubicación de los principales focos emisores concretos o difusos.

APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1• Página 5 de 9

- -Dirección dominante del viento en el área de estudio, en el período en que se lleven a cabo las mediciones.
- -Situación de las zonas sensibles más próximas en relación a la posición de los focos emisores y la dirección predominante de los vientos."

"El número mínimo de puntos de muestreo será de 2. Siempre que sea posible deben utilizarse 2 captadores trabajando simultáneamente".

"La elección del punto de muestreo donde se instalará el equipo se basará en los siguientes criterios:

- -El equipo se ubicará en zonas abiertas con respecto a la dirección de los vientos dominantes.
- -La distancia a edificaciones cercanas, masas arbóreas, muros verticales y otros objetos que puedan incidir en la determinación será del doble de la altura del objeto, siempre que sea posible, o en su defecto superior a 10 metros.
- -Para el caso específico de partículas en suspensión se situará el equipo en un lugar tal, que entre el plano del filtro y el del terreno exista una distancia de 2 metros y en horizontal no existir ningún obstáculo en un radio inferior a 1 metro.

Respecto a la selección del período de muestreo: "La selección del período de muestreo vendrá marcada en gran parte por la legislación aplicable en cada estudio, o en su caso del programa de vigilancia y control de la empresa."

Por defecto, se establece un tiempo mínimo de 2 días consecutivos para los controles de partículas en suspensión.

Las posibles fuentes emisoras asociadas son las siguientes:

- Zona de acopio de los residuos.
- Operaciones de descarga en el vertedero.
- Tránsito de camiones en la propia instalación.

En relación con estas fuentes y teniendo en cuenta los puntos indicados anteriormente se han seleccionado "2" puntos de muestreo ubicados de la siguiente manera:

Punto de muestreo	Parámetros	Fuentes asociadas
PUNTO 1. Captador Nº1. 20056-16501 (Entrada de la instalación)	Partículas PM10 en calidad del aire	- Tránsito de camiones y coches de la propia instalación.
PUNTO 2. Captador Nº2.6.72.00182	Partículas PM10	Descarga de residuosMaquinaria de la propia instalación
(Junto al vaso de la instalación)	en calidad del aire	 Tránsito de camiones y coches de la propia instalación.

APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1 Página 6 de 9

Las muestras fueron recogidas en recipientes de material adecuado como indica el procedimiento interno C6-002001 siendo este recipiente portafiltros individuales y una vez cerradas herméticamente e identificadas, se trasladaron al laboratorio.

Los métodos de análisis empleados fueron:

Parámetro	Técnica
Partículas en Calidad del Aire	C6-9 85100 / Gravimétrico-Filtro 47 mm

7. Resultados

En las siguientes tablas se presentan los valores obtenidos diariamente, y los valores medios obtenidos para los parámetros analizados.

MUES	TREO	Punto 1 Captador 20056-16501		2000	Punto 2 Captador 6.72.00182	
		Día 1	Día 2	Día 1	Día 2	
REFERENCIA FIL	TRO UTILIZADO	I-14-445	I-14-447	I-14-446	I-14-448	
		20.10.14	21.10.14	20.10.14	21.10.14	
	INICIO	12:28	11:31	12:46	11:46	
FECHA Y HORA	FINAL	21.10.14	22.10.14	21.10.14	22.10.14	
		11:28	11:31	11:46	11:46	
TEMPERATURA	AMBIENTE (°C)	19	18	19	19	
PRESIÓN ATMO	OSFÉRICA (Ha)	928	932	929	934	
HUMEDAD RE	ELATIVA (%)	68,45	67,44	68,48	67,59	
VELOCIDAD DE	L VIENTO(m/s)	0,74	1,09	0,74	1,09	
TIEMPO FUNC	IONAMIENTO	23,5 horas	24 horas	23,4 horas	24 horas	
PESO PARTICU DEPOSITA		3,14±1,00	<1	3,89±1,24	1,39±0,34	
VOL. MUESTE	READO (m³)	104,514	106,214	105,112	102,214	
CONCENT NORMALIZA		31 ± 10	<10	37 ± 12	14 ± 5	

APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1• Página 7 de 9

A continuación se presentan los *resultados obtenidos* y su comparación con los *límites legislativos* aplicables.

MUESTREO	PUNTO 1 Captador 20056_16501		PUNTO 2 Captador 6.72.00182	
	Día 1	Día 2	Día 1	Día 2
CONCENTRACIÓN NORMALIZADA (μg/m³)	31 ± 10	<10	37 ± 12	14 ± 5

RESULTADOS	
LÍMITES SEGÚN LEGISLACIÓN (R.D. 102/2011)	
Anexo I. Valores límite para las partículas (PM10) en condiciones ambientales	50(μg/m³)
para la protección de la salud. Valor que no podrá superarse más de 35 veces por año.	

APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1 Página 8 de 9

8. Criterios de aceptación

El procedimiento interno de calidad del aire C6002001 dice que los criterios de aceptación generales en función de la pluviometría y de la velocidad del viento:

- 1. Se rechazará el muestreo completo cuando se superen en el 60% de los días de muestreo:
 - Un 30% la velocidad media anual del viento en la zona.
- Se rechazará una muestra puntual de un día cuando en ese día se superen los límites anteriormente definidos.

Para ello se recurrirán a los datos suministrados por el centro meteorológico de la estación más cercana o a datos estadísticos, debiendo justificarse la representatividad de los datos.

8.1. Valores promedio

Tal y como se reflejan de los datos sacados del Ministerio de Agricultura, Alimentación y Medioambiente el valor medio del viento en 2014 fue de: 2,19 m/s, y tal y como se indica en el procedimiento interno, no se podrá superar el 30% de la velocidad media anual (2,84 m/s), por lo que se da por aceptado el muestreo.

9. Conclusiones

En conformidad con los resultados recogidos en el presente informe:

Applus Norcontrol, S.L.U. certifica que, teniendo en cuenta la incertidumbre asociada a la inspección realizada a la calidad del aire de la instalación "FCC VALLADOLID" y tomando los valores de los de los resultados de los días inspeccionados, **cumple** con los límites establecidos en el R.D. 102/2011 para partículas PM10 para los días comprendidos entre el 20 de Octubre de 2014 y el 22 de Octubre de 2014, y extrapolando los datos al periodo de un año, cumple el criterio de no superar en más de 35 ocasiones el valor límite.

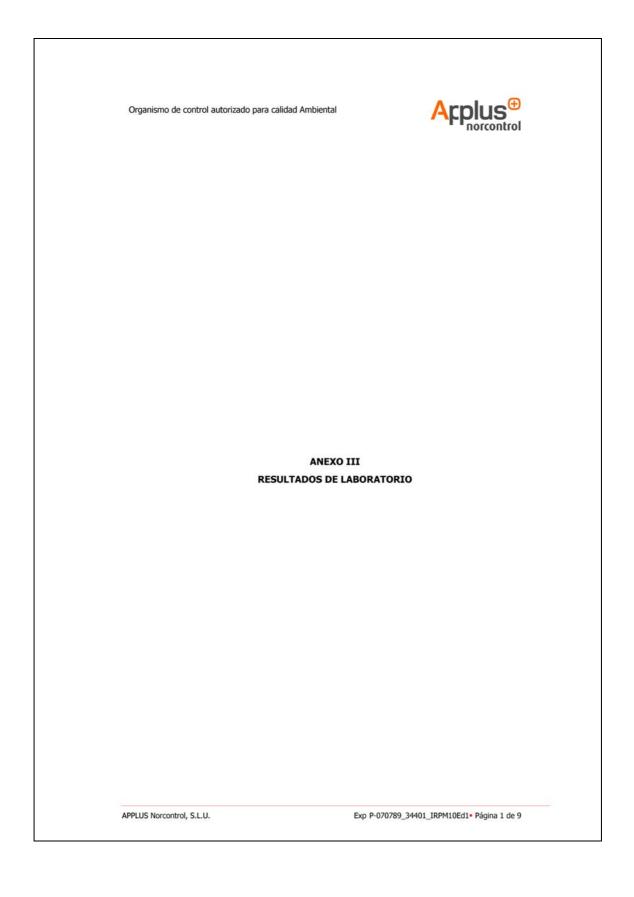
APPLUS Norcontrol, S.L.U.

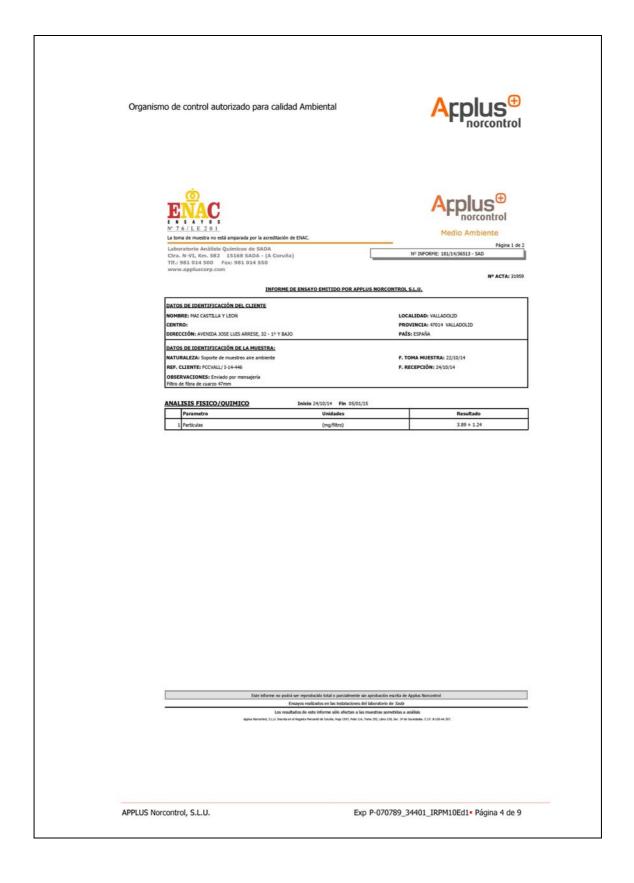
Exp P-070789_34401_IRPM10Ed1 Página 9 de 9

ANEXO I REFERENCIA DE LOS PROCEDIMIENTOS INTERNOS DE INSPECCIÓN

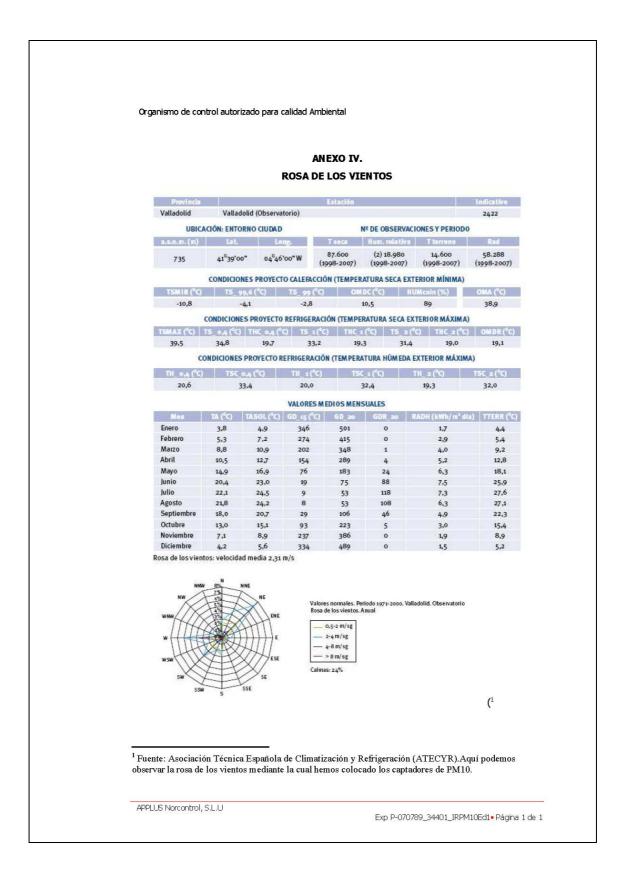
REFERENCIA	TÍTULO
C6-000004	Gestión de muestras de contaminación atmosférica.
C6-002001	Planes de muestreo, toma de muestras y determinación de parámetros en inmisión
C6-002007	Determinación de partículas PM10 en inmisión.

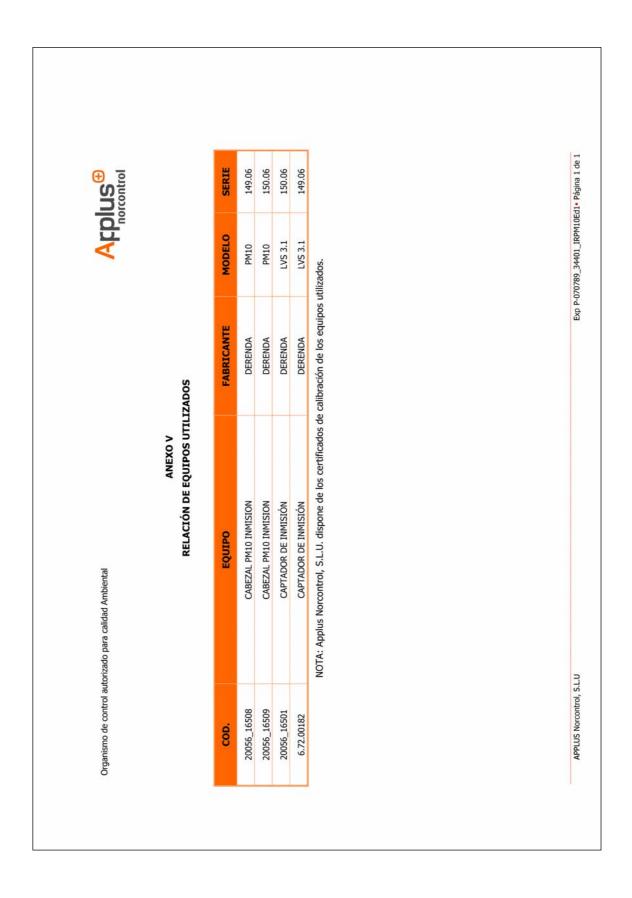
APPLUS Norcontrol, S.L.U. Exp P-070789_34401_IRPM10Ed1 Página 1 de 1


ANEXO II LOCALIZACIÓN DE LOS PUNTOS DE MUESTREO


APPLUS Norcontrol, S.L.U.

Exp P-070789_34401_IRPM10Ed1 Página 1 de 1





ANEXO VI FOTOS

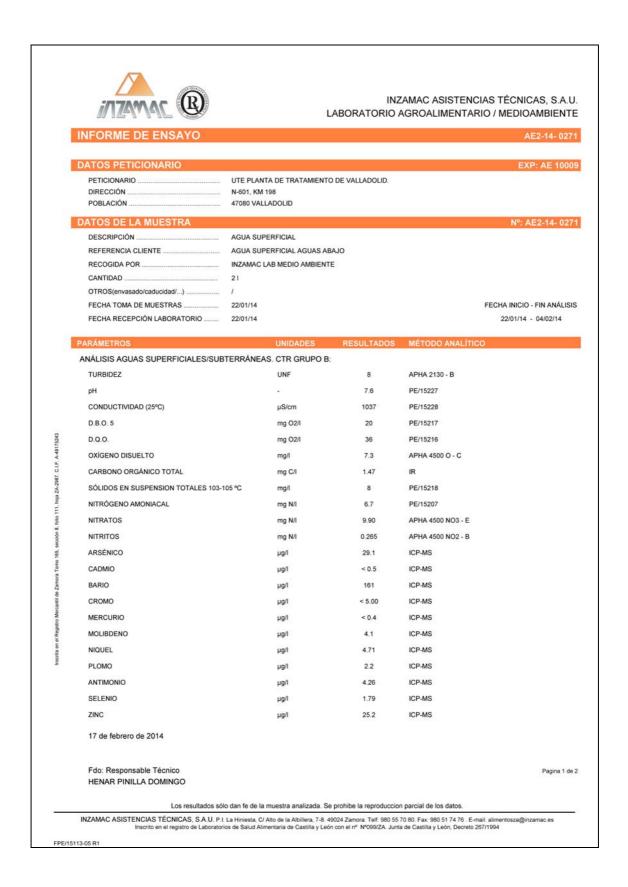
Captador 1

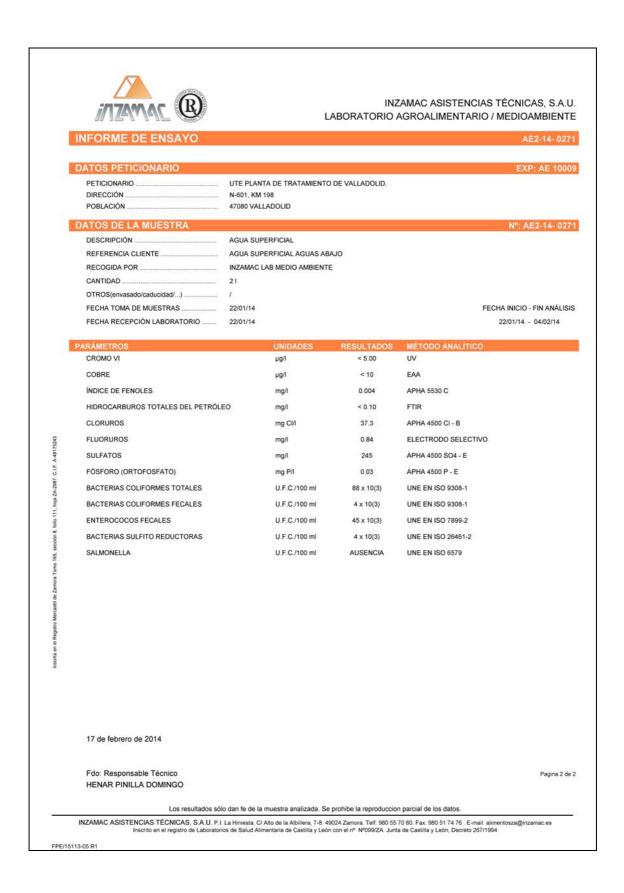
Captador 2

APPLUS Norcontrol, S.L.U

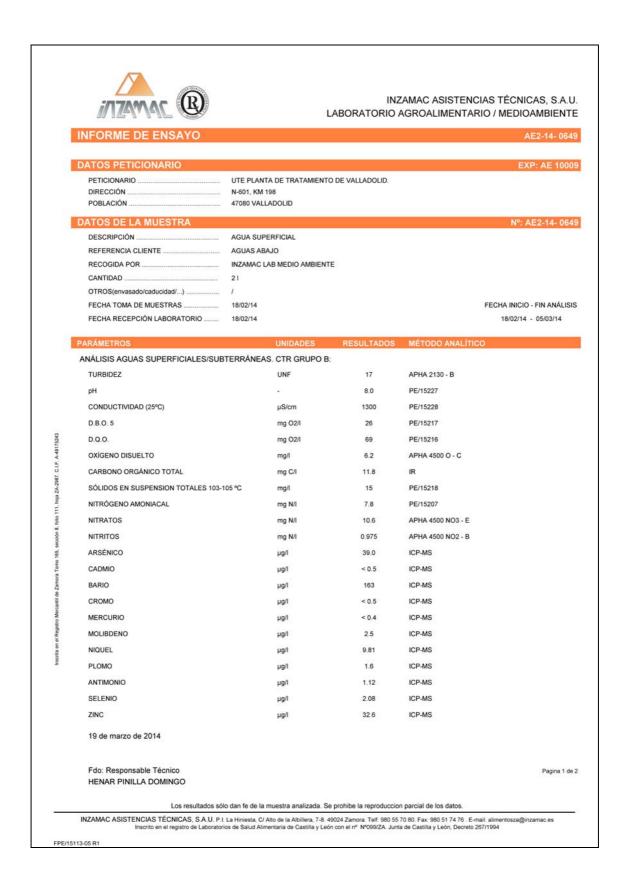
Exp P-070789_34401_IRPM10Ed1* Página 1 de 1

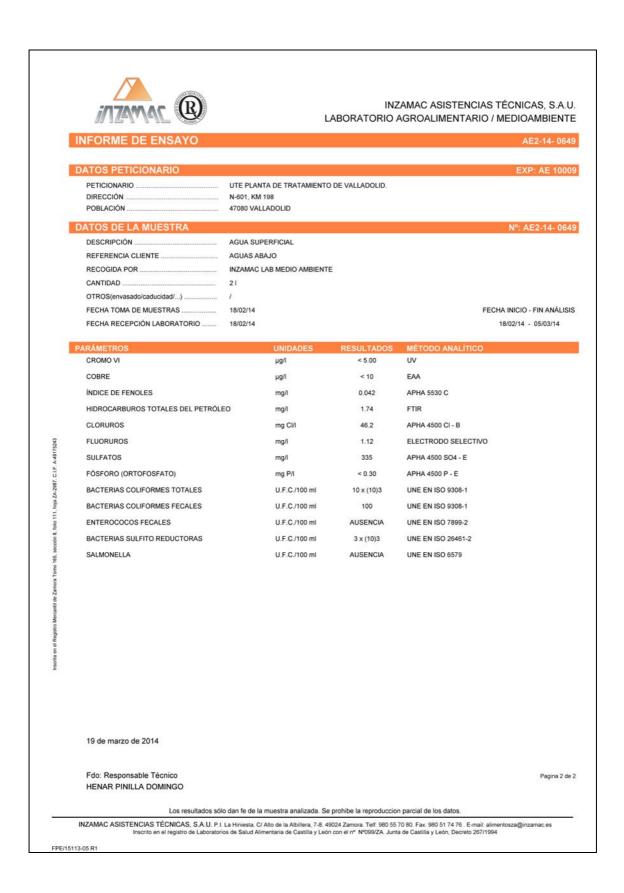
3.6.8. PVV8 – Aquas Superficiales Aquas Abajo.

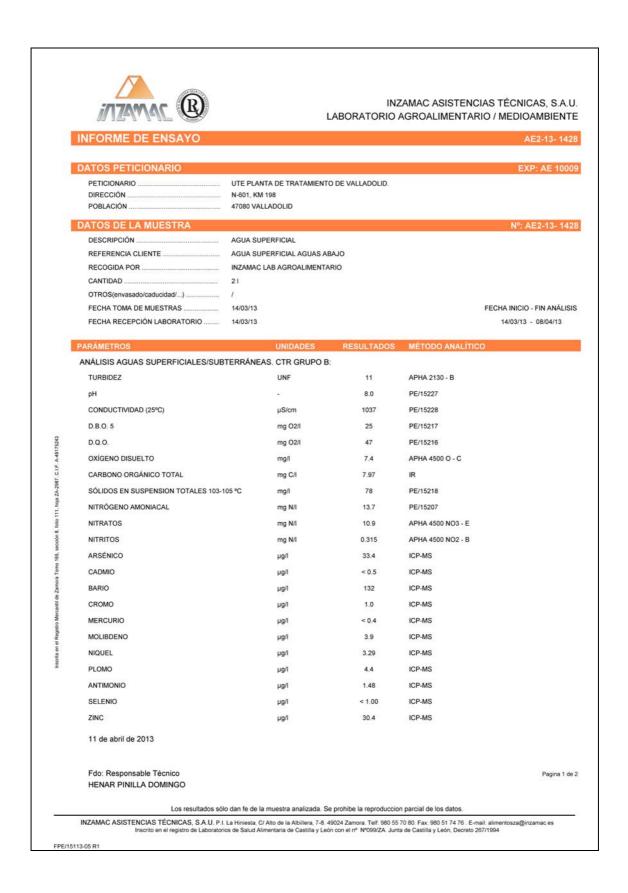

Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U.

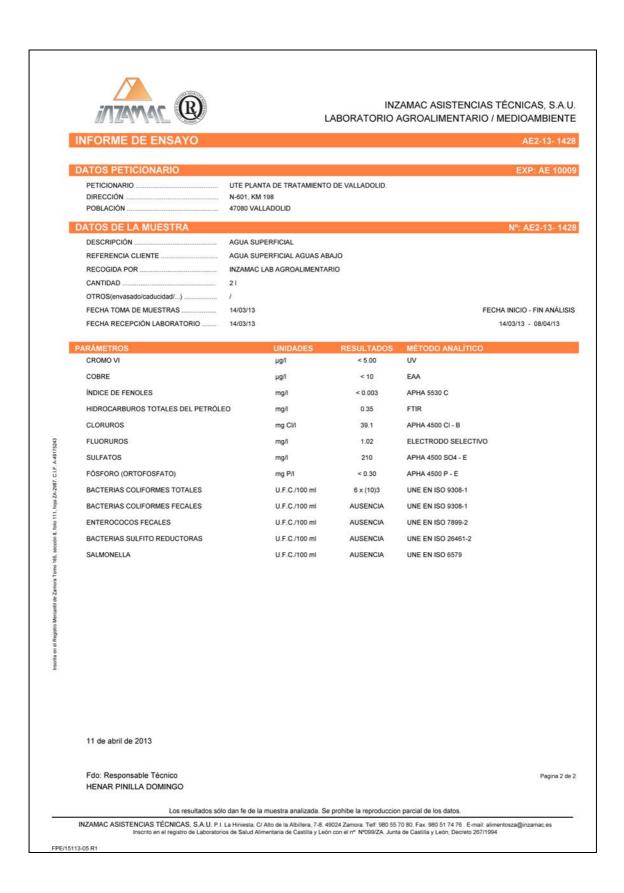

Las mediciones realizadas en este punto de vigilancia, se encuentran en los informes con referencias:

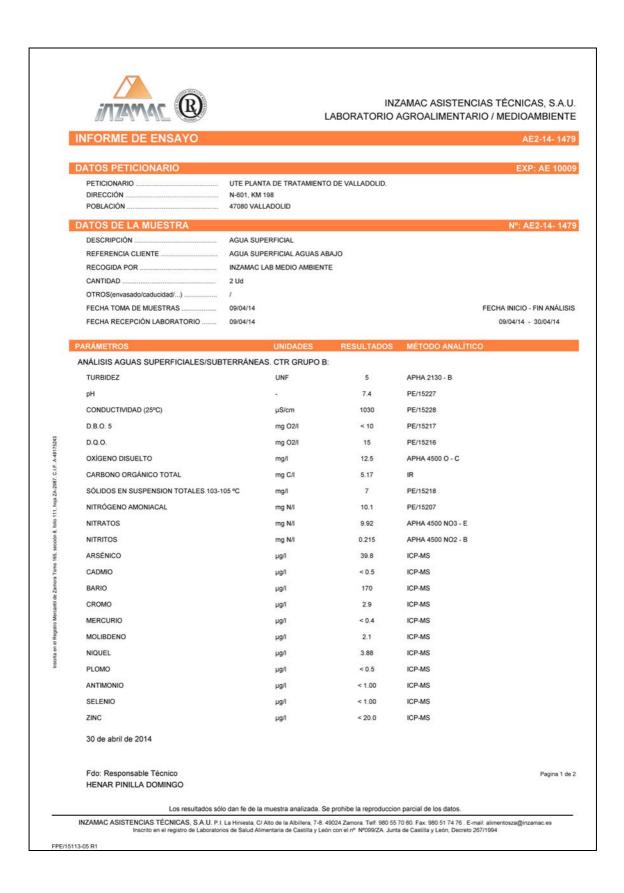
- Informe Medición Enero 2014: AE2-14-0271.
- Informe Medición Febrero 2014: AE2-14-0649.
- Informe Medición Marzo 2014: AE2-14-1067.
- Informe Medición Abril 2014: AE2-14-1479.
- Informe Medición Mayo 2014: AE2-14-2058.
- Informe Medición Junio 2014: AE2-14-2764.
- Informe Medición Julio 2014: AE2-14-3148.
- Informe Medición Agosto 2014: AE2-14-3675.
- Informe Medición Septiembre 2014: AE2-14-4122.
- Informe Medición Octubre 2014: AE2-14-4570.
- Informe Medición Noviembre 2014: AE2-14-5164.
- Informe Medición Diciembre 2014: AE2-14-5599.

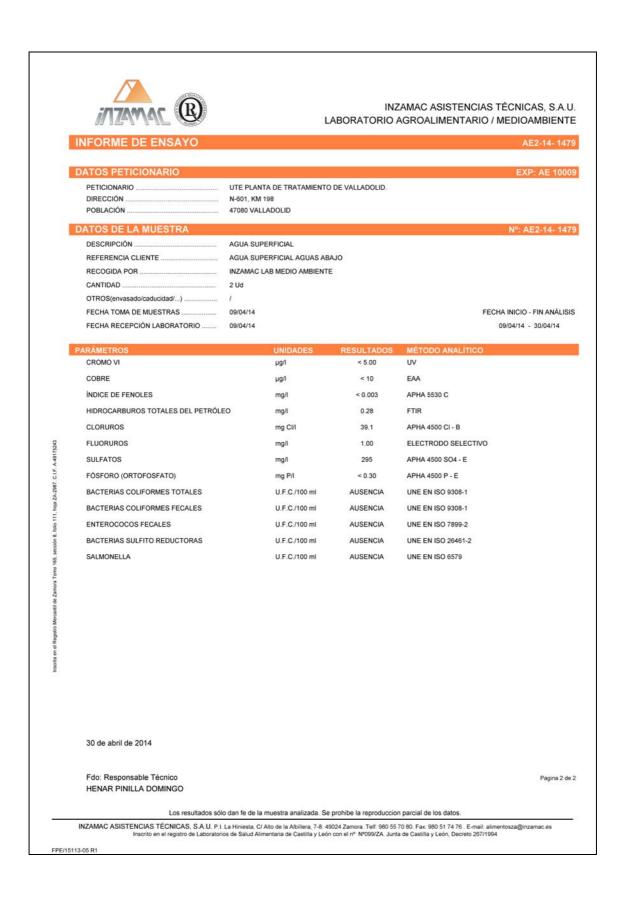

Los informes se muestran a continuación.

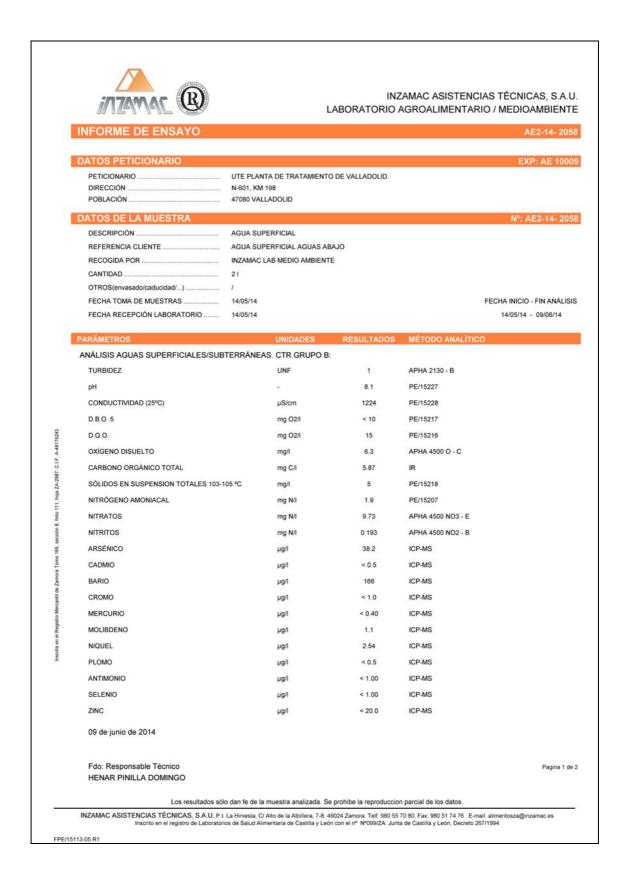

Informe Medición Enero 2014: AE2-14-0271.

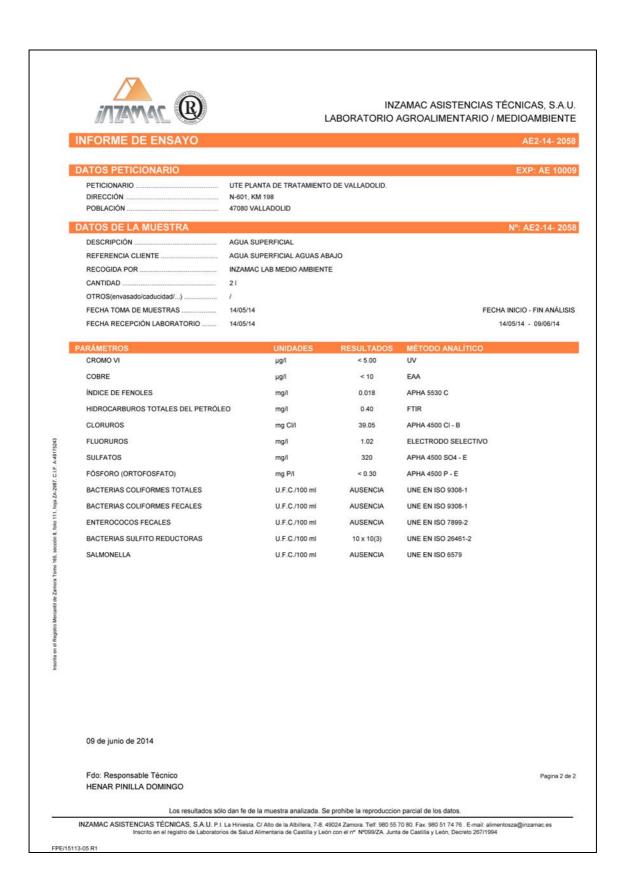


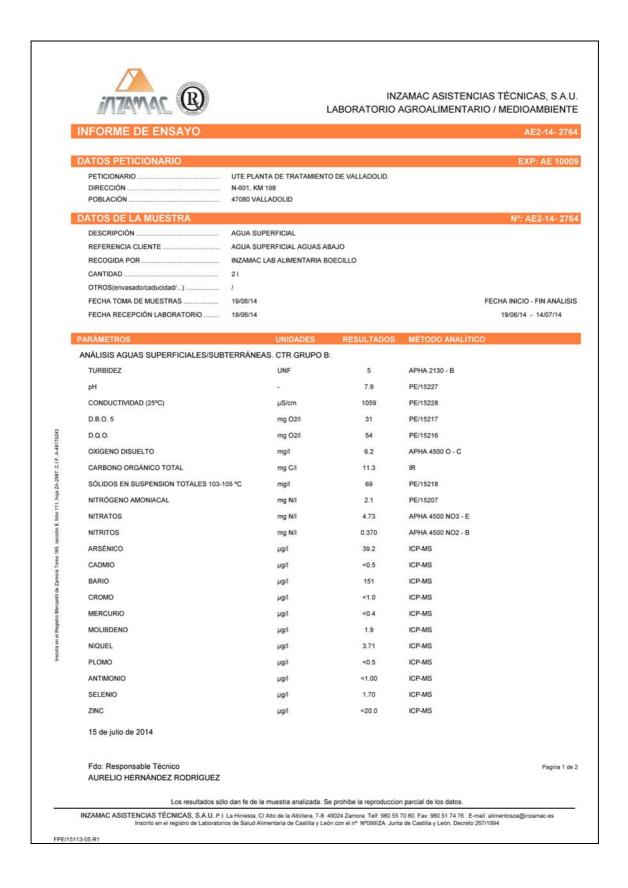

Informe Medición Febrero 2014: AE2-14-0649.

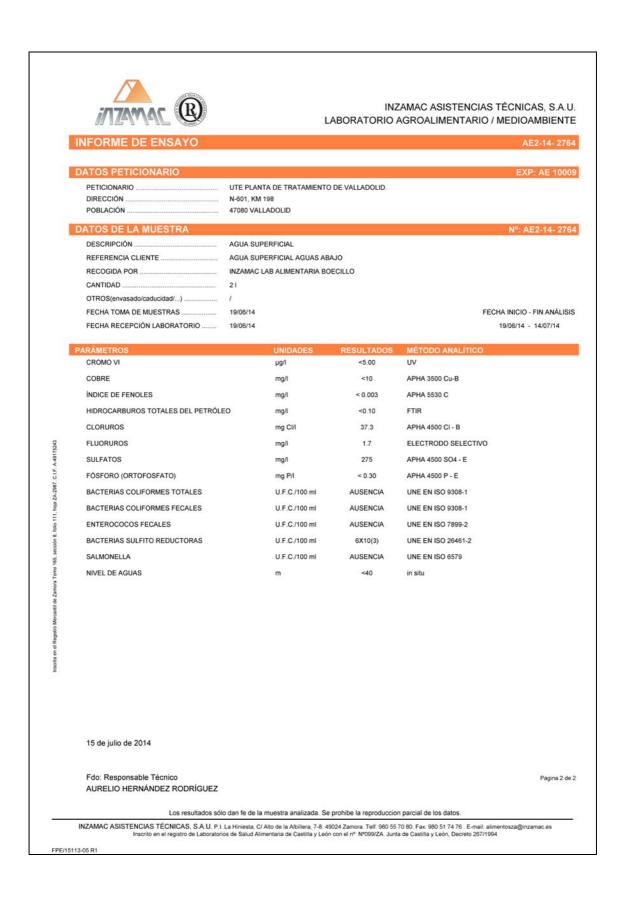


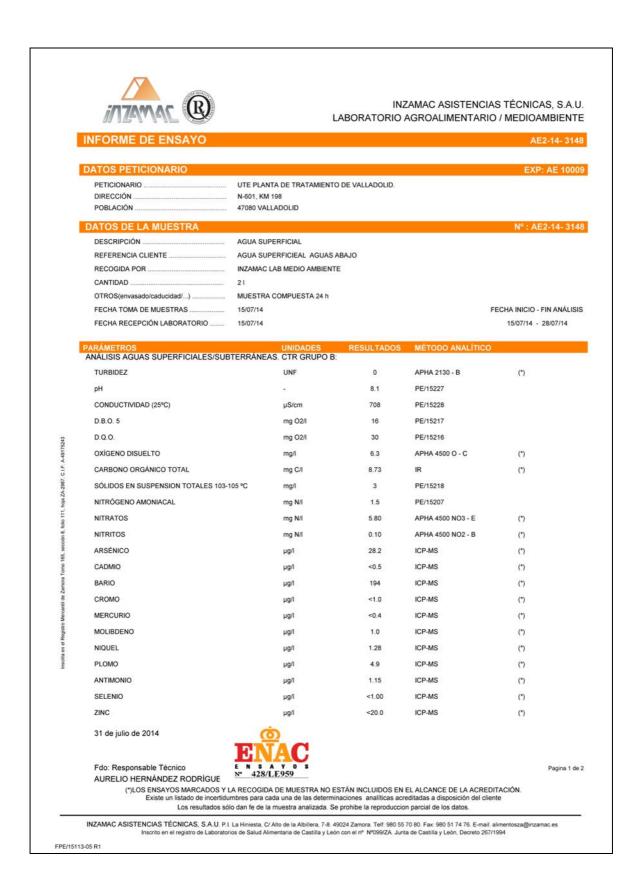

Informe Medición Marzo 2014: AE2-14-1067.

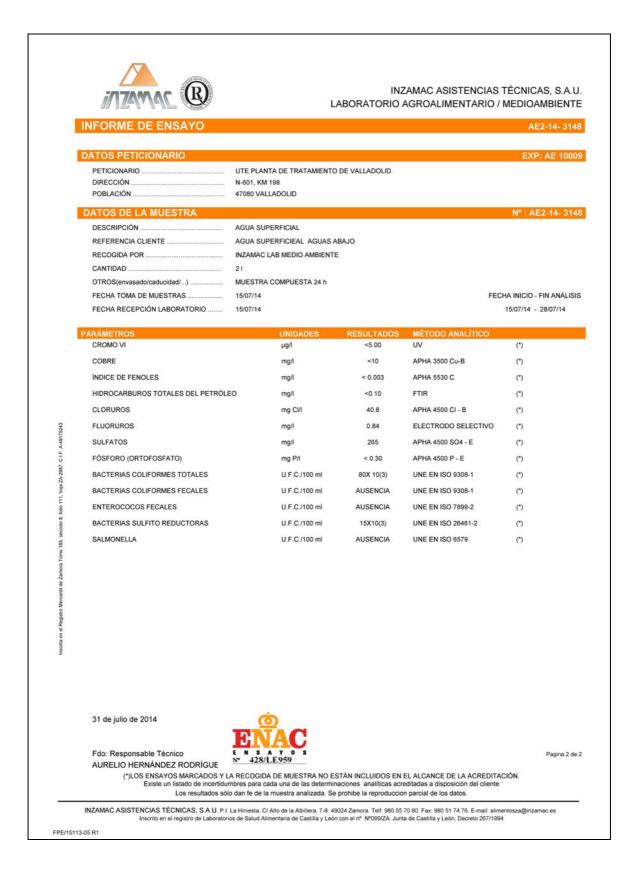


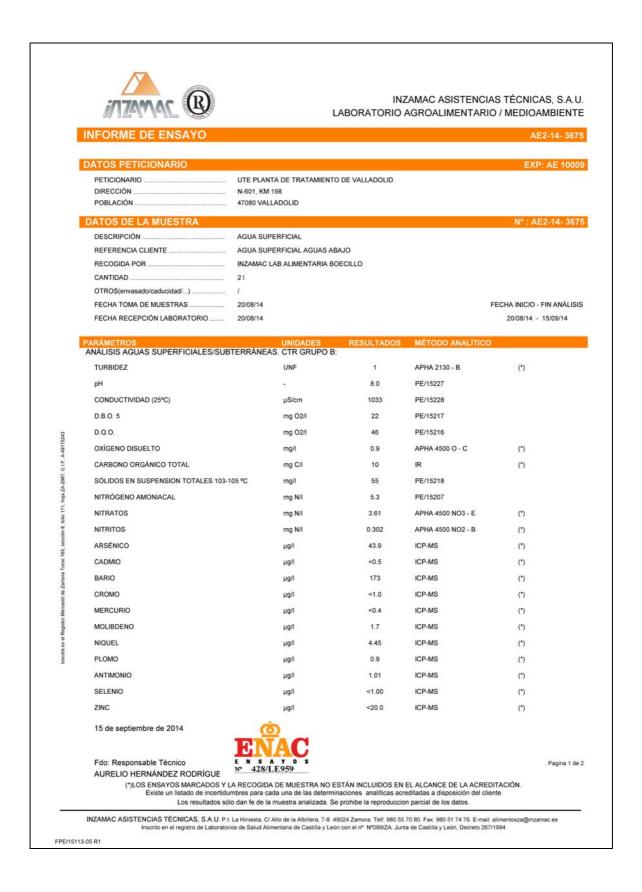

Informe Medición Abril 2014: AE2-14-1479.

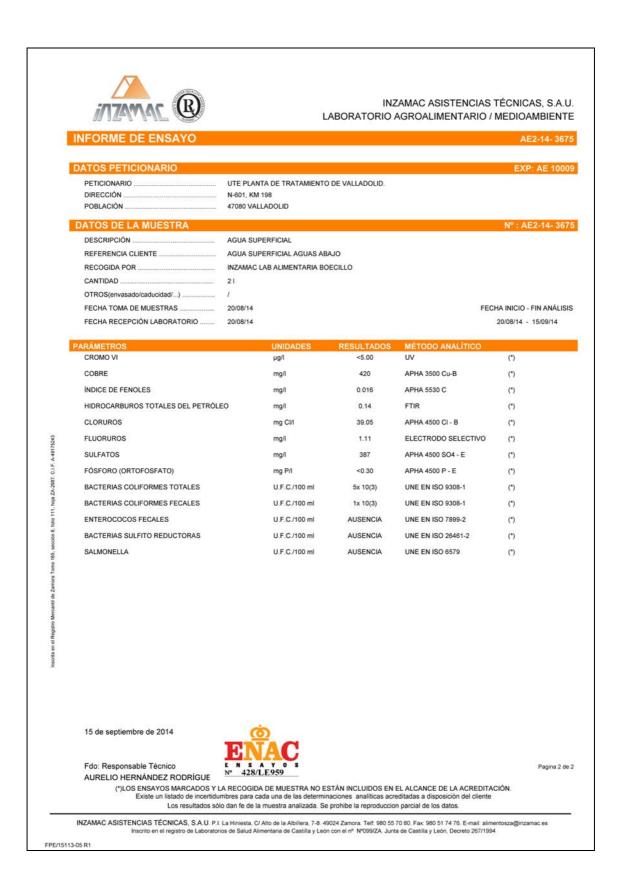


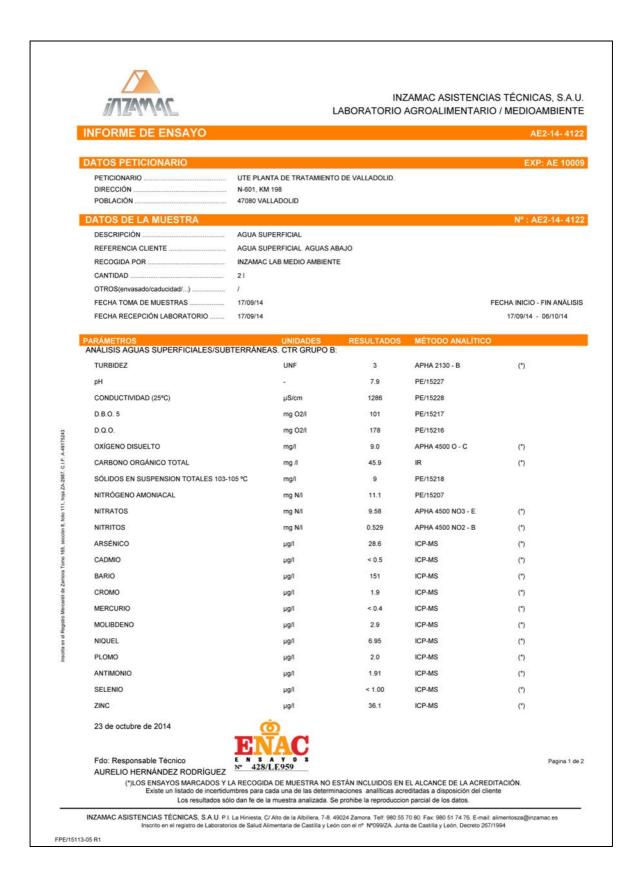

Informe Medición Mayo 2014: AE2-14-2058.



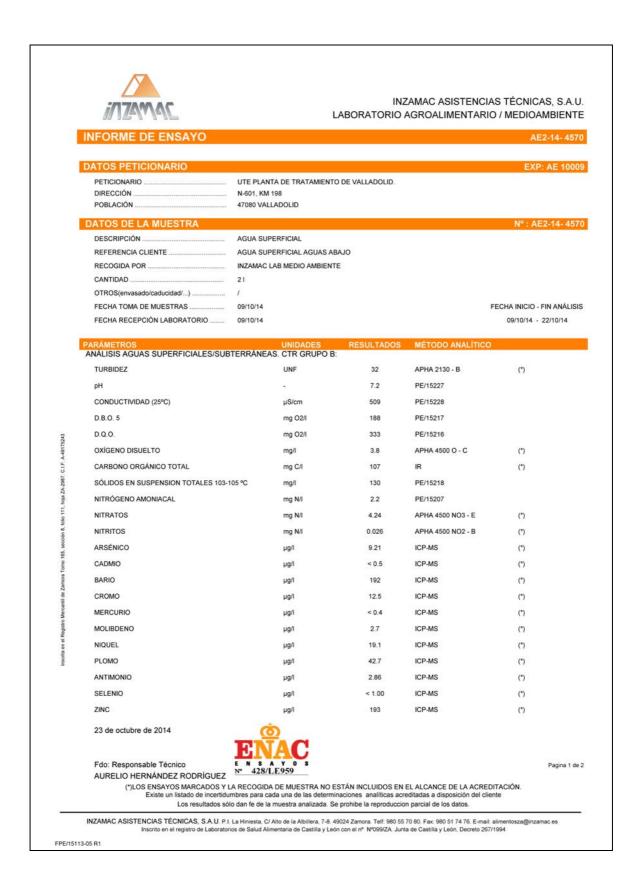

Informe Medición Junio 2014: AE2-14-2764.

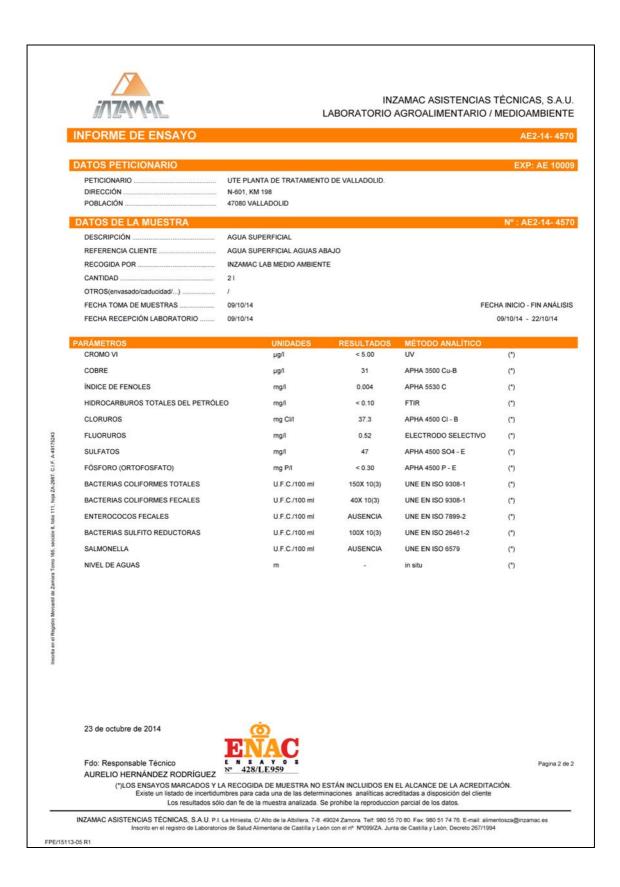


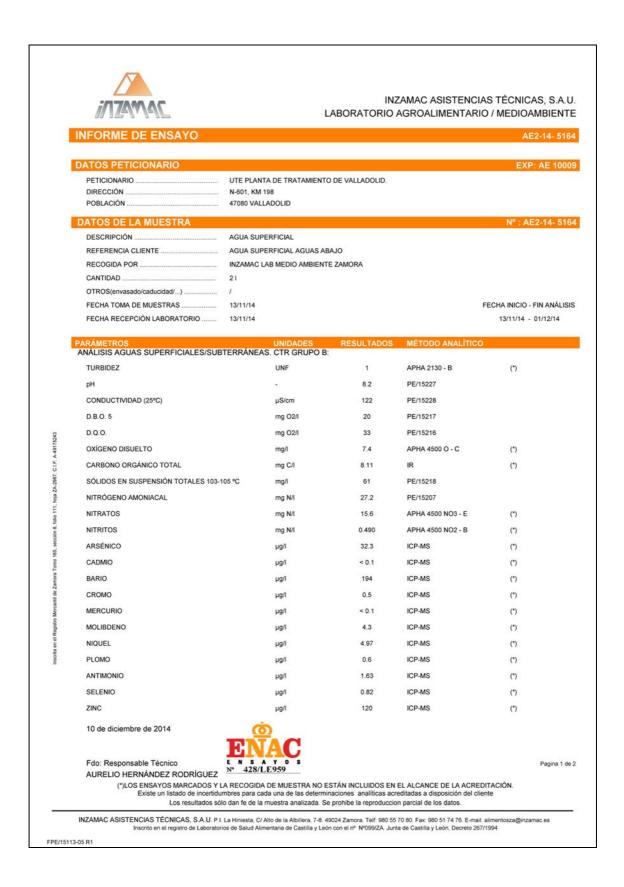

Informe Medición Julio 2014: AE2-14-3148.

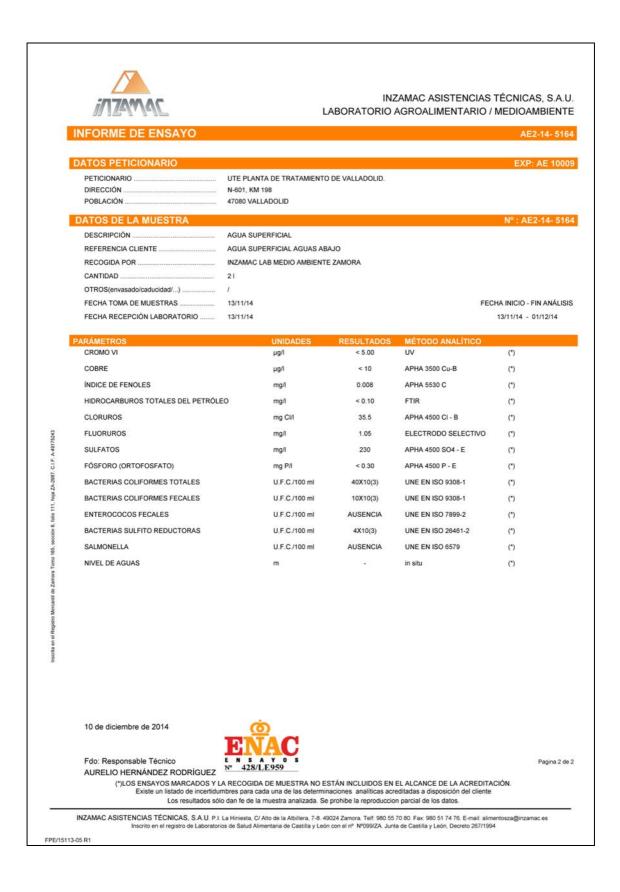


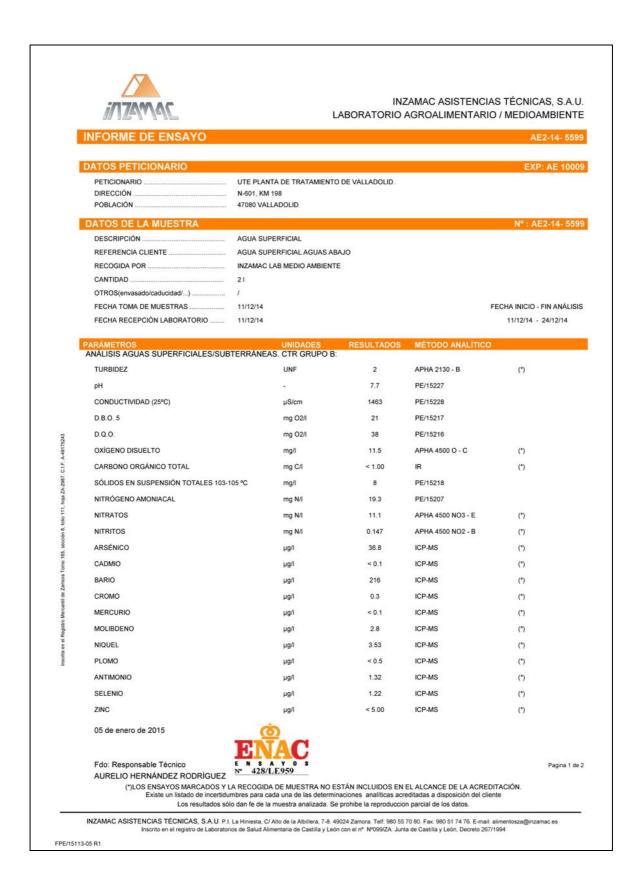

Informe Medición Agosto 2014: AE2-14-3675.

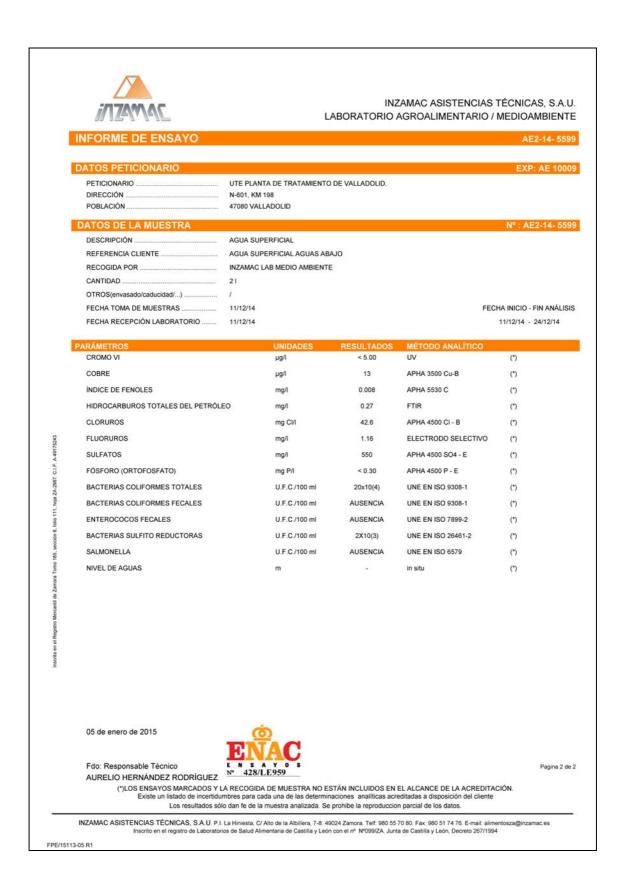



Informe Medición Septiembre 2014: AE2-14-4122.




Informe Medición Octubre 2014: AE2-14-4570.




Informe Medición Noviembre 2014: AE2-14-5164.

Informe Medición Diciembre 2014: AE2-14-5599.

3.6.9. PVV9 – Aquas Subterráneas Aquas Arriba.

Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U.

Debido al escaso nivel existente en este punto de vigilancia, la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U, no ha podido realizar los informes analíticos asociados a este Punto de Vigilancia, se muestran comunicaciones recibidas al respecto.

Se acompañan a esta comunicación los Informes analíticos de resultados de los ensayos realizados en las muestras recogidas el pasado día 18 de febrero de 2014 en la Planta de Tratamiento de Residuos de Valladolid.

En contra de las previsiones, la muestra denominada "Aguas subterráneas aguas arriba" no pudo ser recogida para su análisis en el Laboratorio debido al escaso nivel de agua existente en el piezómetro, no considerándose dicho volumen representativo para la obtención de resultados analíticos precisos.

En Boecillo, a 19 de marzo de 2014

Henar Pinilla Domingo Directora Área Laboratorios Agroalimentarios INZAMAC Asistencias Técnicas, S.A.U.

Pág 1 de 1

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. - C/ Alto de la Albillera, parcelas 7 - 8. P.I. La Hiniesta, 49025 – Zamora Telf. 980557080. Fax 980517476.

Inscrita en el Registro Mercantil de Zamora Tomo 165, sección 8, folio 111, hoja ZA-2987, C.I.F. A-49175243 LABORATORIO DE ENSAYO ACREDITADO POR ENAC PARA ANÁLISIS DE AGUAS CON ACREDITACIÓN NÚMERO 428/LE959

Se acompañan a esta comunicación los Informes analíticos de resultados de los ensayos realizados en las muestras recogidas el pasado día 14 de mayo de 2014 en la Planta de Tratamiento de Residuos de Valladolid.

En contra de las previsiones, la muestra denominada "Aguas subterráneas aguas arriba" no pudo ser recogida para su análisis en el Laboratorio debido al escaso nivel de agua existente en el piezómetro, no considerándose dicho volumen representativo para la obtención de resultados analíticos precisos.

En Boecillo, a 9 de junio de 2014

Henar Pinilla Domingo Directora Área Laboratorios Agroalimentarios INZAMAC Asistencias Técnicas, S.A.U.

Pág 1 de 1

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. - C/ Alto de la Albillera, parcelas 7 - 8. P.I. La Hiniesta, 49025 – Zamora Telf. 980557080. Fax 980517476.

Inscrita en el Registro Mercantil de Zamora Tomo 165, sección 8, folio 111, hoja ZA-2987, C.I.F. A-49175243 LABORATORIO DE ENSAYO ACREDITADO POR ENAC PARA ANÁLISIS DE AGUAS CON ACREDITACIÓN NÚMERO 428/LE959

Se acompañan a esta comunicación los Informes analíticos de resultados de los ensayos realizados en las muestras recogidas el pasado día 20 de agosto de 2014 en la Planta de Tratamiento de Residuos de Valladolid.

En contra de las previsiones, la muestra denominada "Aguas subterráneas aguas arriba" no pudo ser recogida para su análisis en el Laboratorio debido al escaso nivel de agua existente en el piezómetro, no considerándose dicho volumen representativo para la obtención de resultados analíticos precisos.

En Boecillo, a 15 de septiembre de 2014

Aurelio Hernández Rodríguez Director Área Laboratorios Agroalimentarios INZAMAC Asistencias Técnicas, S.A.U.

Pág 1 de 1

INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. - C/ Alto de la Albillera, parcelas 7 - 8. P.I. La Hiniesta, 49025 – Zamora Telf. 980557080. Fax 980517476.

Inscrita en el Registro Mercantil de Zamora Tomo 165, sección 8, folio 111, hoja ZA-2987, C.I.F. A-49175243

LABORATORIO DE ENSAYO ACREDITADO POR ENAC PARA ANÁLISIS DE AGUAS CON ACREDITACIÓN NÚMERO 428/LE959

Se acompañan a esta comunicación los Informes analíticos de resultados de los ensayos realizados en las muestras recogidas el pasado día 13 de noviembre de 2014 en la Planta de Tratamiento de Residuos de Valladolid.

En contra de las previsiones, la muestra denominada "Aguas subterráneas aguas arriba" no pudo ser recogida para su análisis en el Laboratorio debido al escaso nivel de agua existente en el piezómetro, no considerándose dicho volumen representativo para la obtención de resultados analíticos precisos.

En Boecillo, a 10 de diciembre de 2014

Aurelio Hernández Rodríguez

Director Área Laboratorios Agroalimentarios

INZAMAC Asistencias Técnicas, S.A.U.

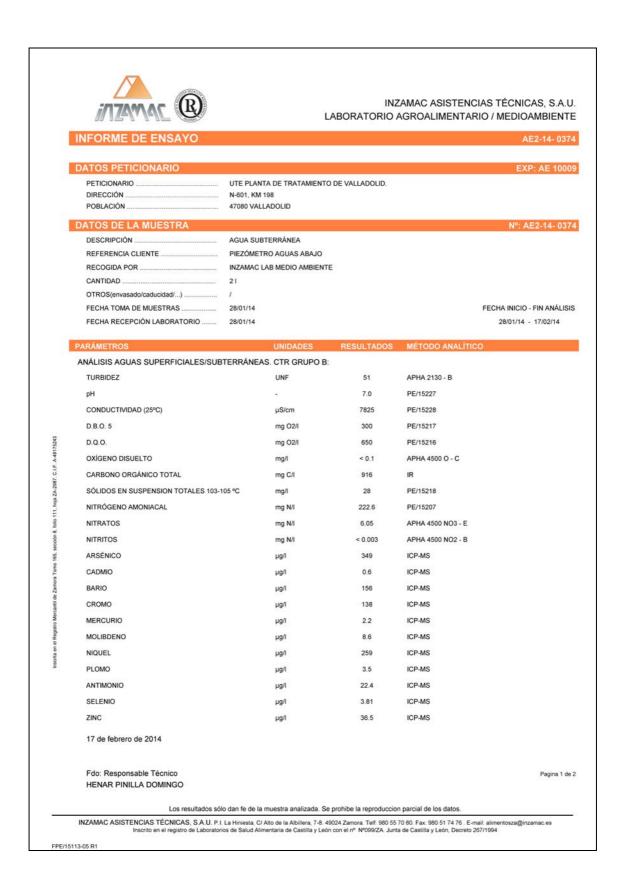
Pág 1 de 1

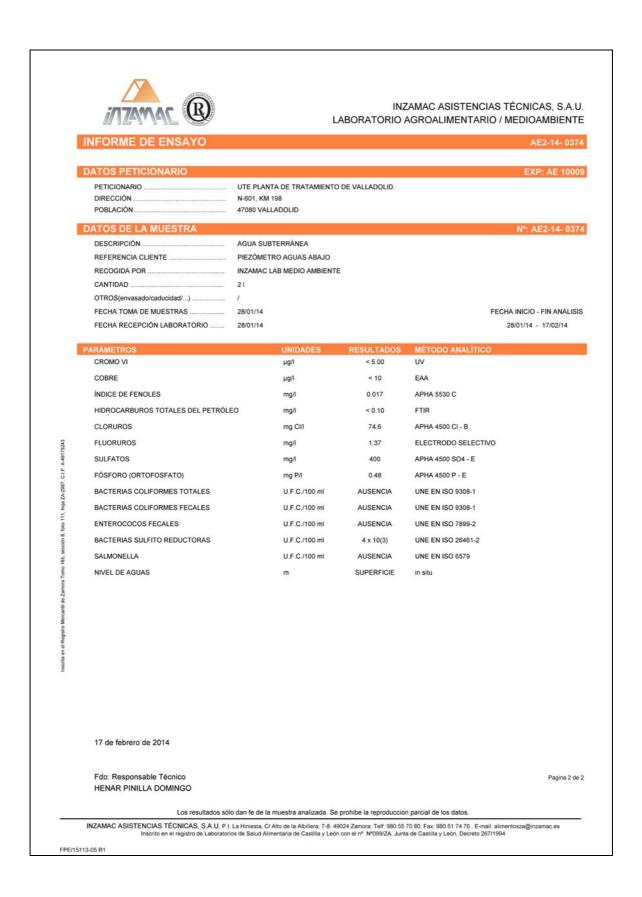
INZAMAC ASISTENCIAS TÉCNICAS, S.A.U. - C/ Alto de la Albillera, parcelas 7 - 8. P.I. La Hiniesta, 49025 – Zamora Telf. 980557080. Fax 980517476.

Telf. 980557080. Fax 980517476.
Inscrita en el Registro Mercantil de Zamora Tomo 165, sección 8, folio 111, hoja ZA-2987, C.I.F. A-49175243.

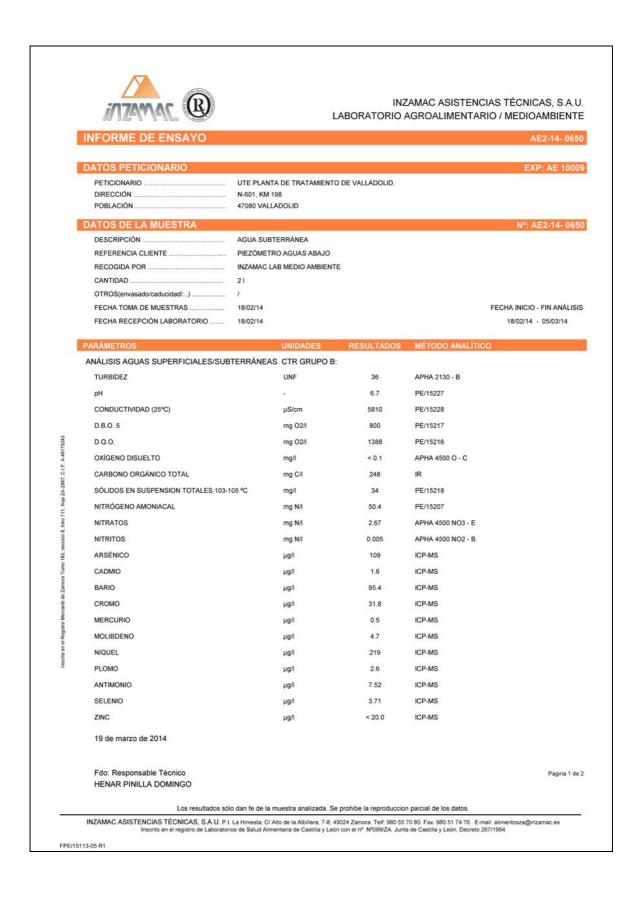
LABORATORIO DE ENSAYO ACREDITADO POR ENAC PARA ANÁLISIS DE AGUAS CON ACREDITACIÓN NÚMERO 428/LE959

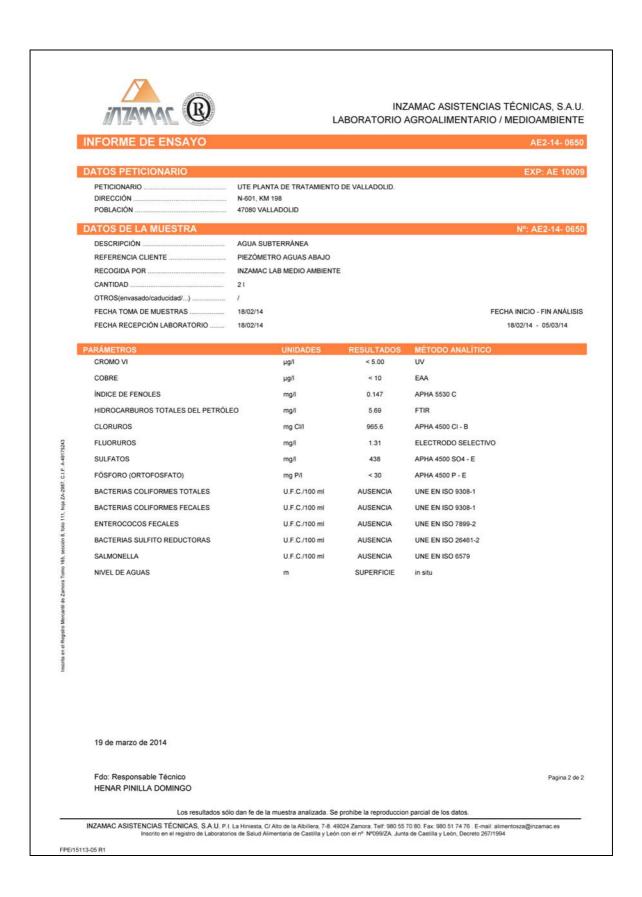
3.6.10. PVV10 – Aguas Subterráneas Aguas Abajo

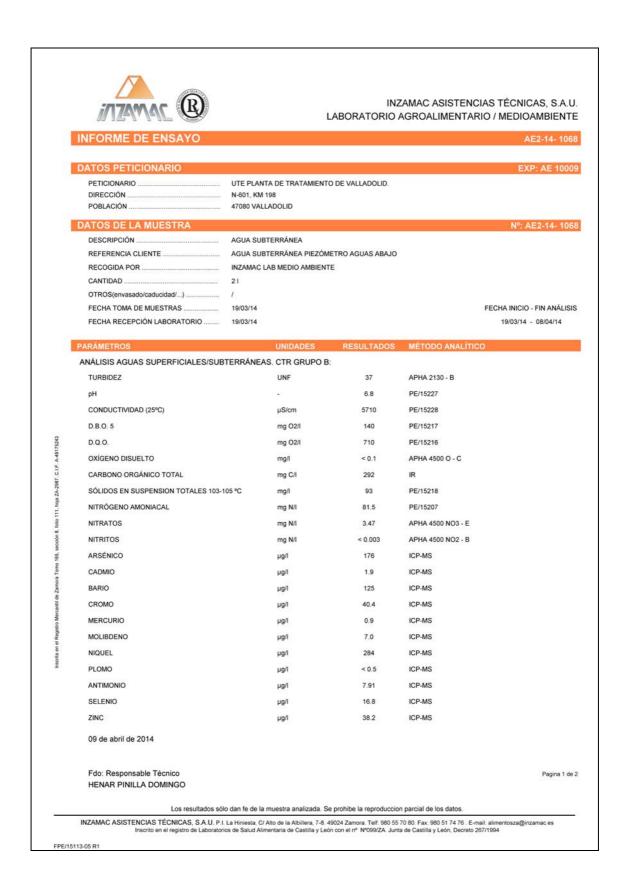

Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U.

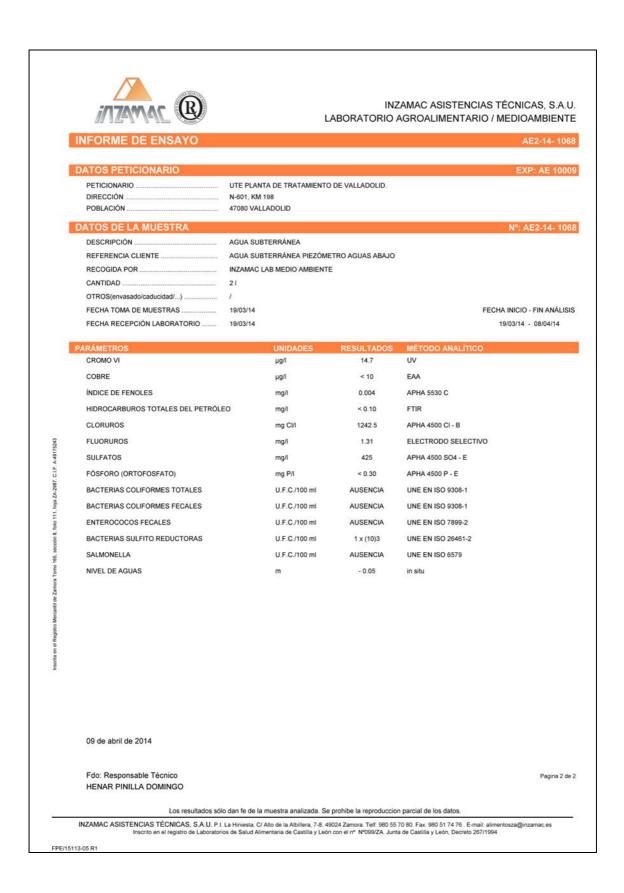

Las mediciones realizadas en este punto de vigilancia, se encuentran en los informes con referencias:

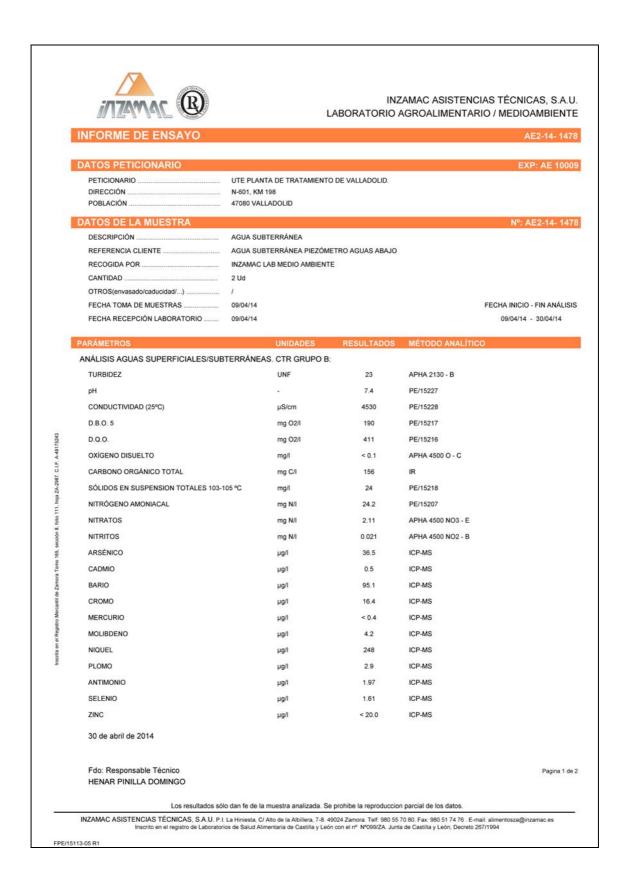
- Informe Medición Enero 2014: AE2-14-0374.
- Informe Medición Febrero 2014: AE2-14-0650.
- Informe Medición Marzo 2014: AE2-14-1068.
- Informe Medición Abril 2014: AE2-14-1478.
- Informe Medición Mayo 2014: AE2-14-2059.
- Informe Medición Junio 2014: AE2-14-2765.
- Informe Medición Julio 2014: AE2-14-3149.
- Informe Medición Agosto 2014: AE2-14-3676.
- Informe Medición Septiembre 2014: AE2-14-4121.
- Informe Medición Octubre 2014: AE2-14-4571.
- Informe Medición Noviembre 2014: AE2-14-5165.
- Informe Medición Diciembre 2014: AE2-14-5600.

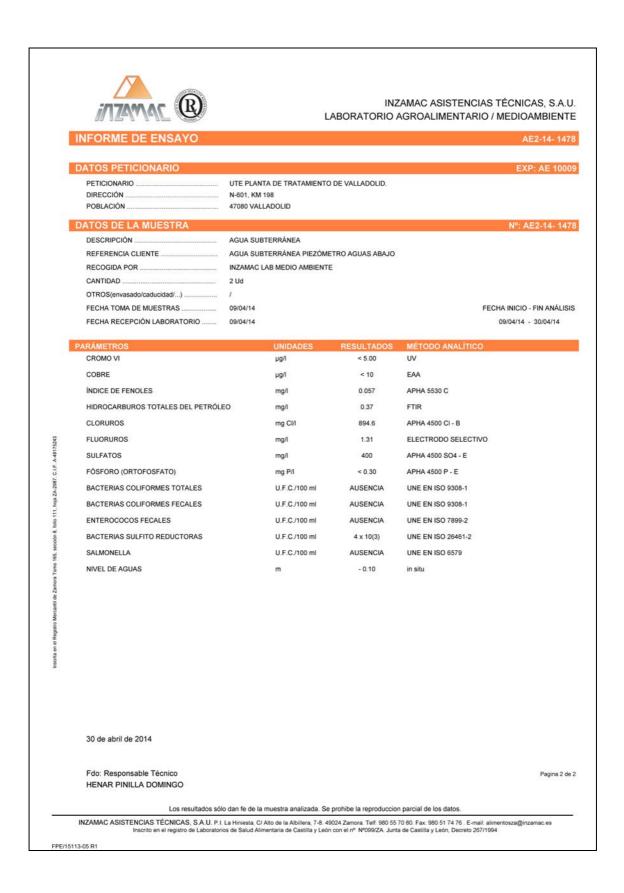

Los informes se muestran a continuación.

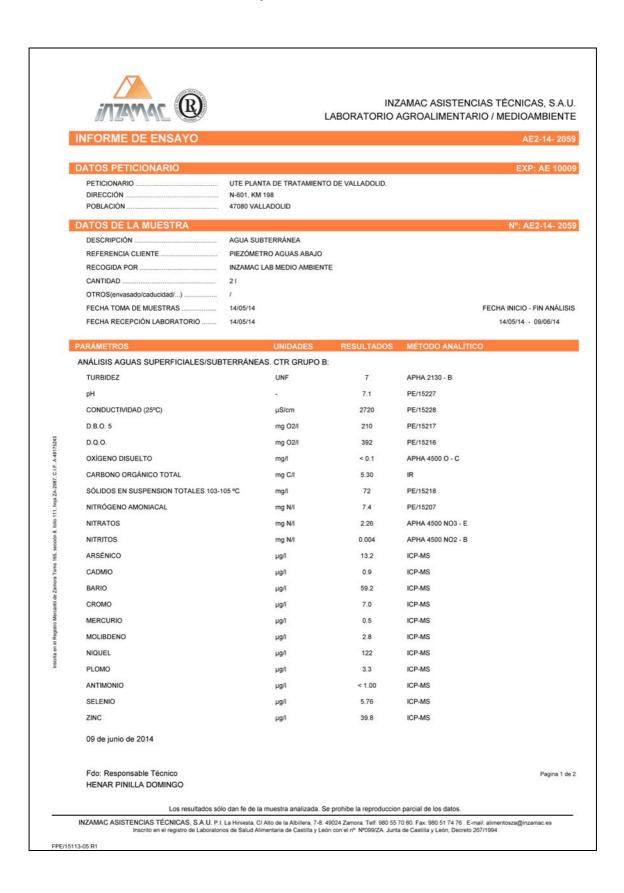

- Informe Medición Enero 2014: AE2-14-0374.

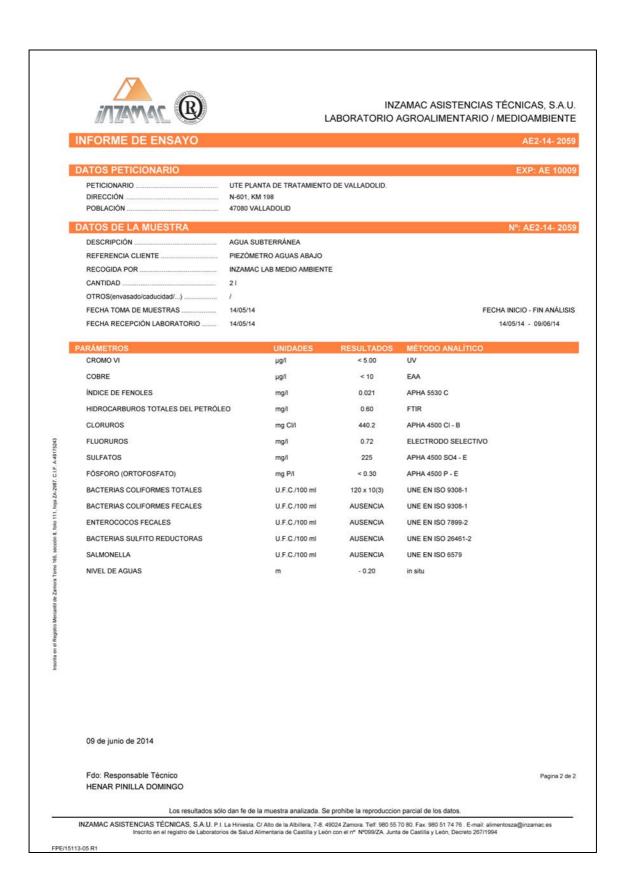


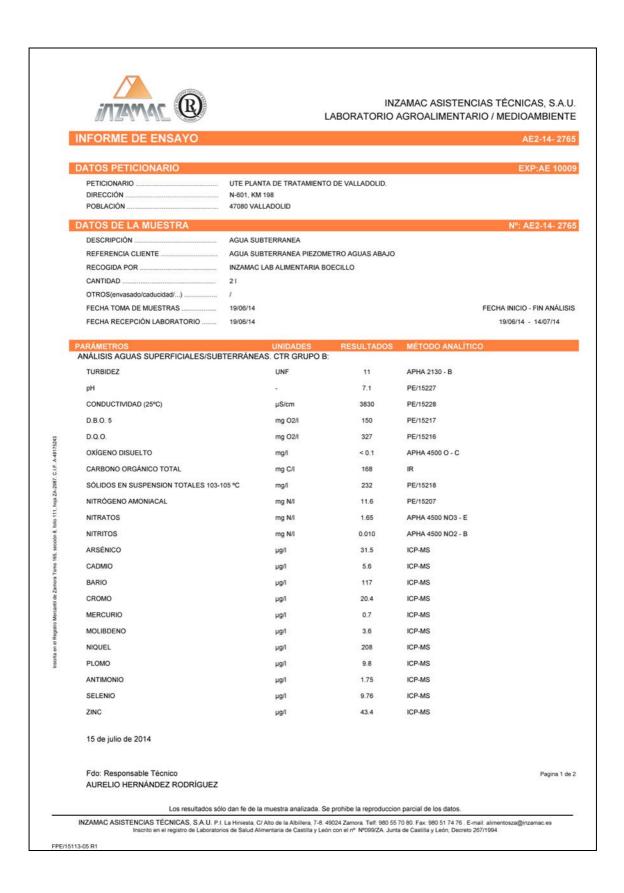

- Informe Medición Febrero 2014: AE2-14-0650.

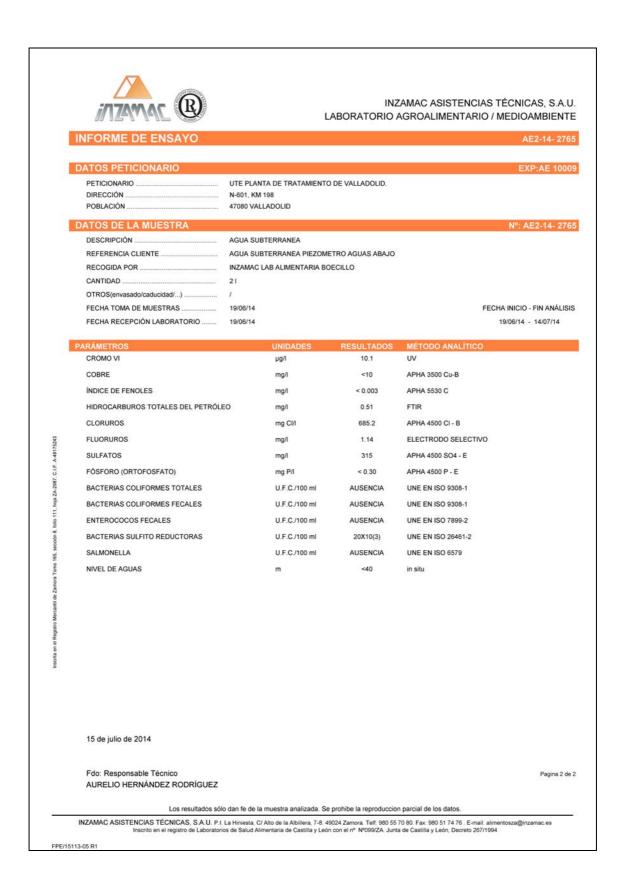


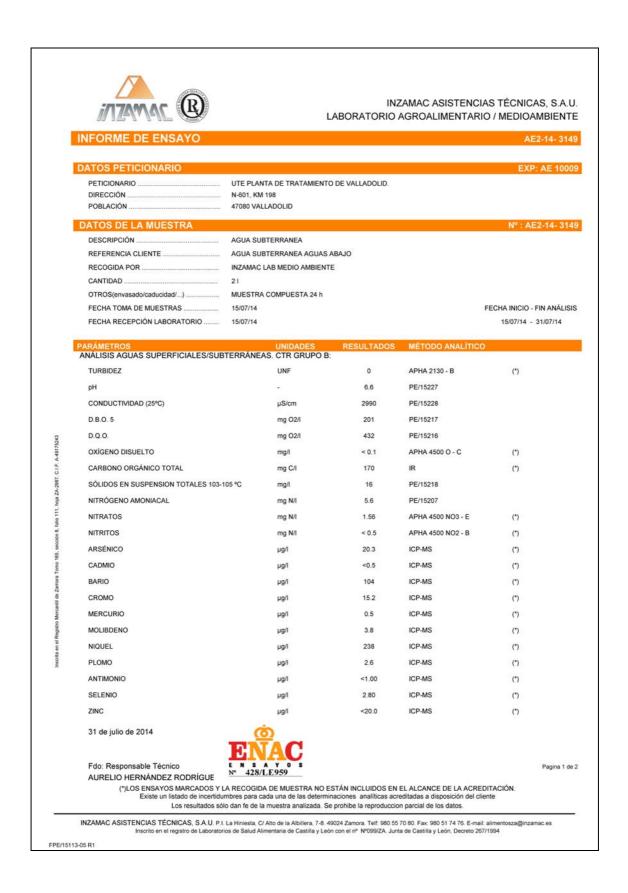

- Informe Medición Marzo 2014: AE2-14-1068.

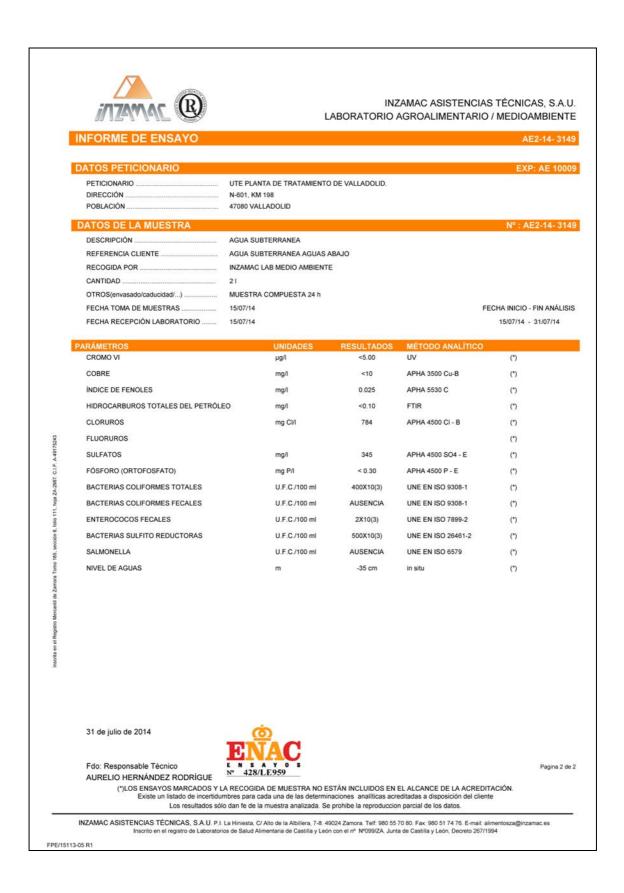


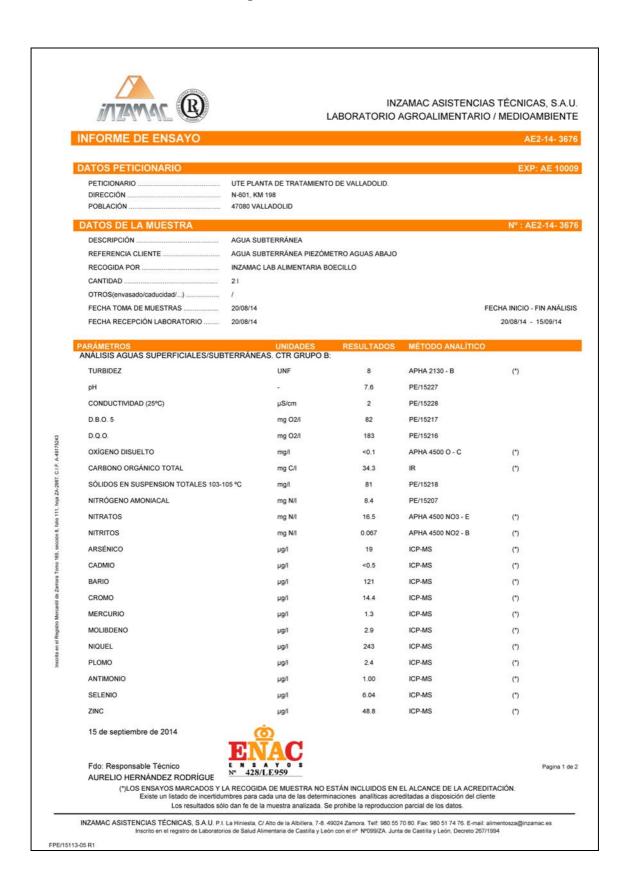

- Informe Medición Abril 2014: AE2-14-1478.



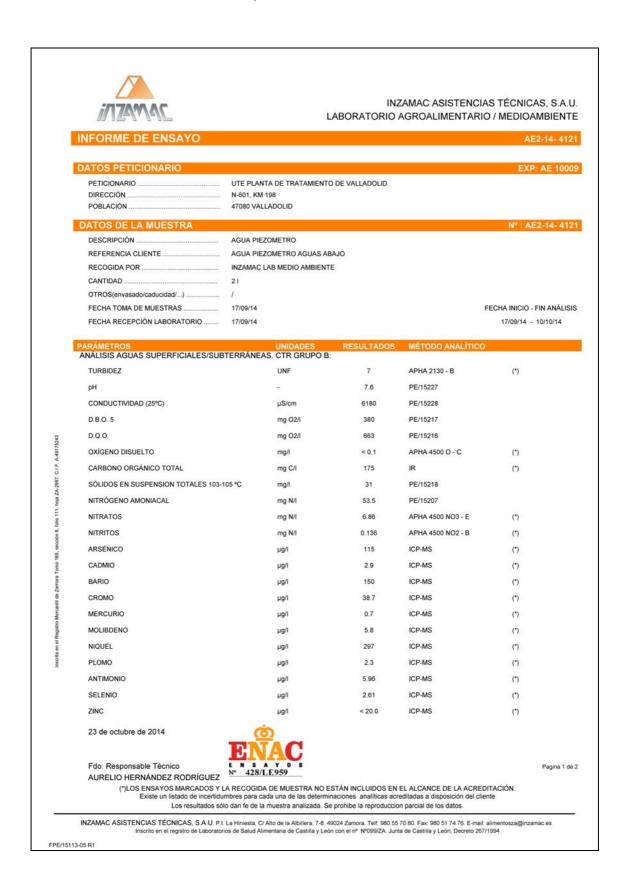

- Informe Medición Mayo 2014: AE2-14-2059.

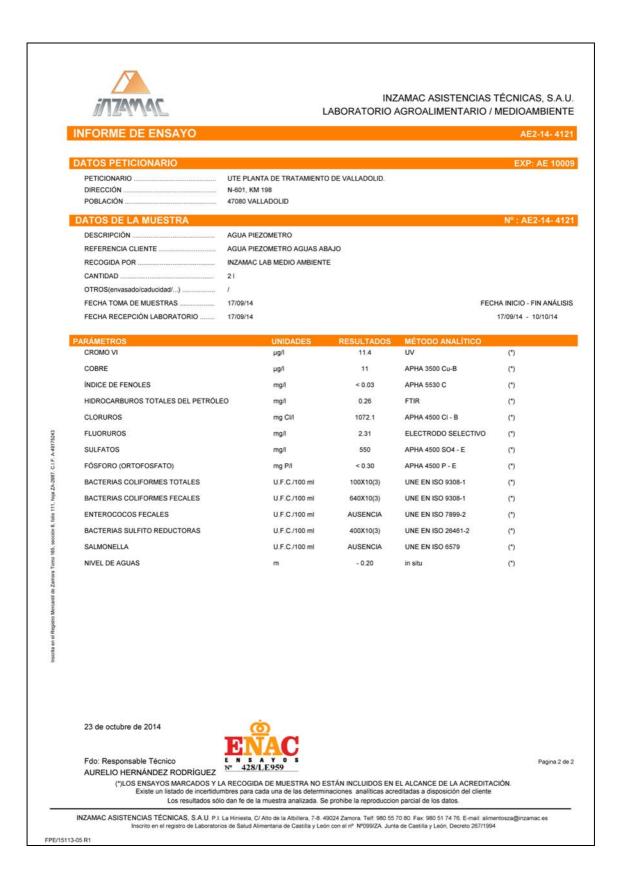


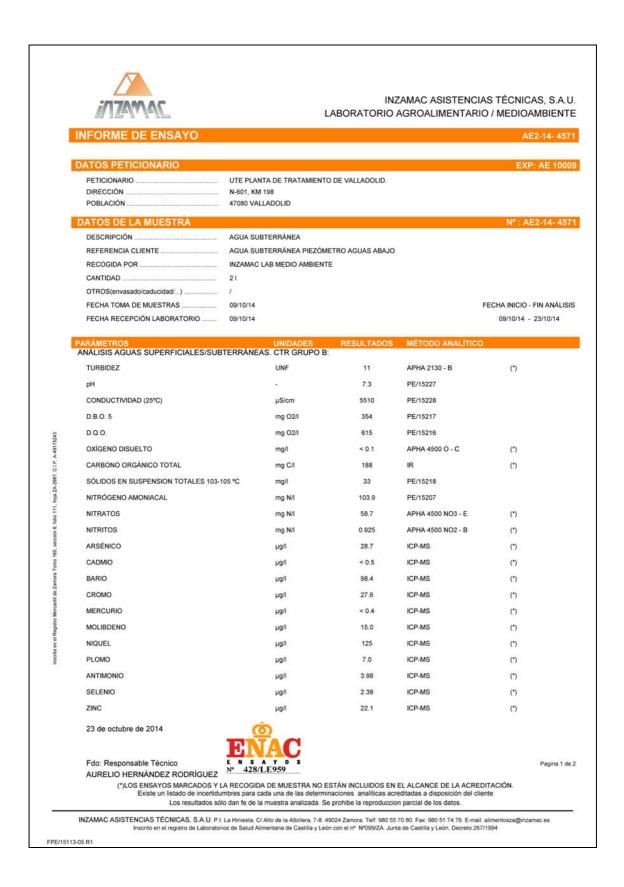

- Informe Medición Junio 2014: AE2-14-2765.

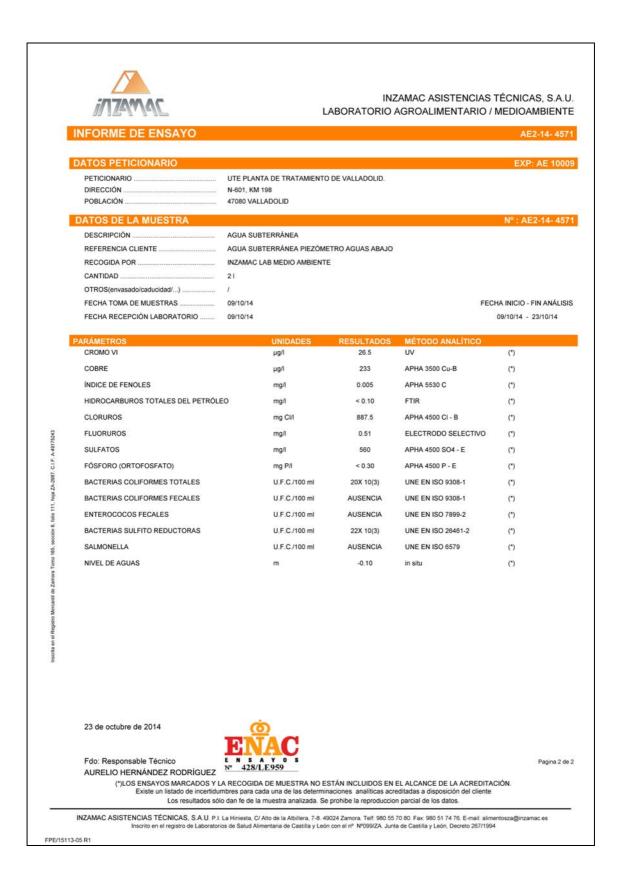


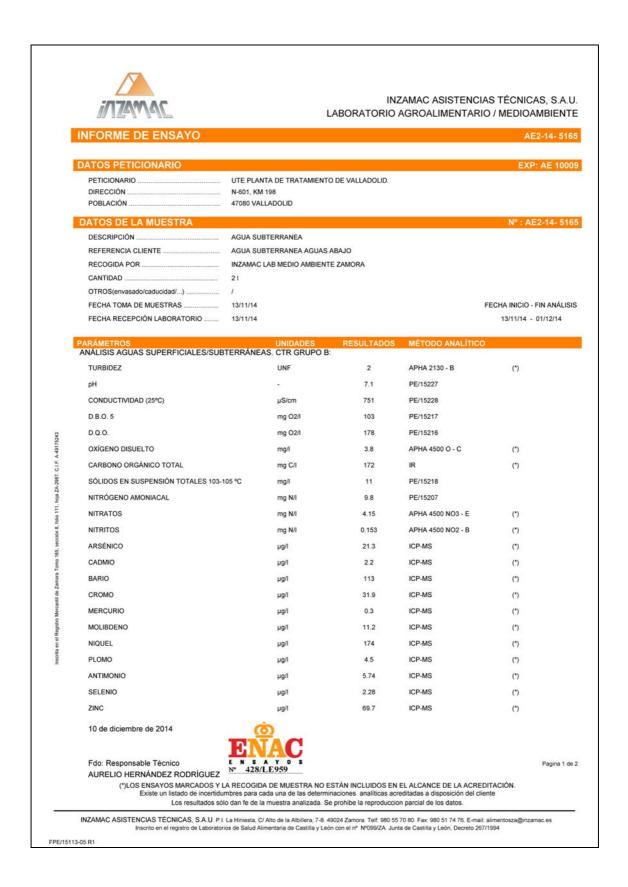
- Informe Medición Julio 2014: AE2-14-3149.

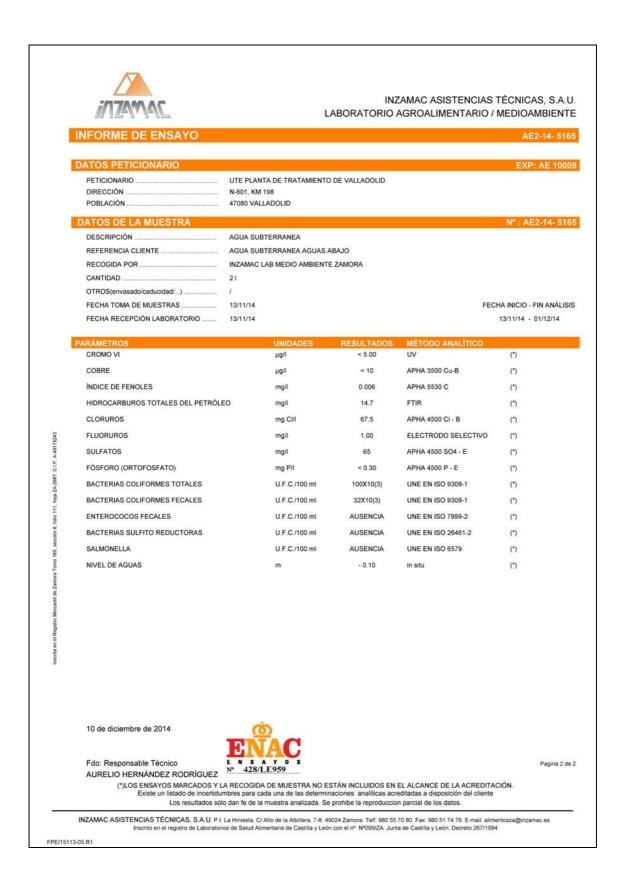


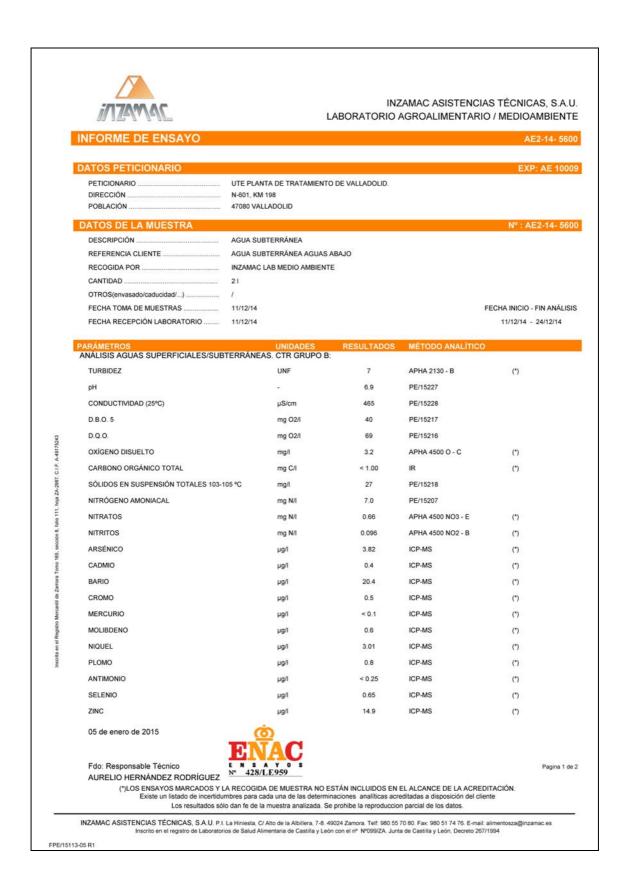

- Informe Medición Agosto 2014: AE2-14-3676.

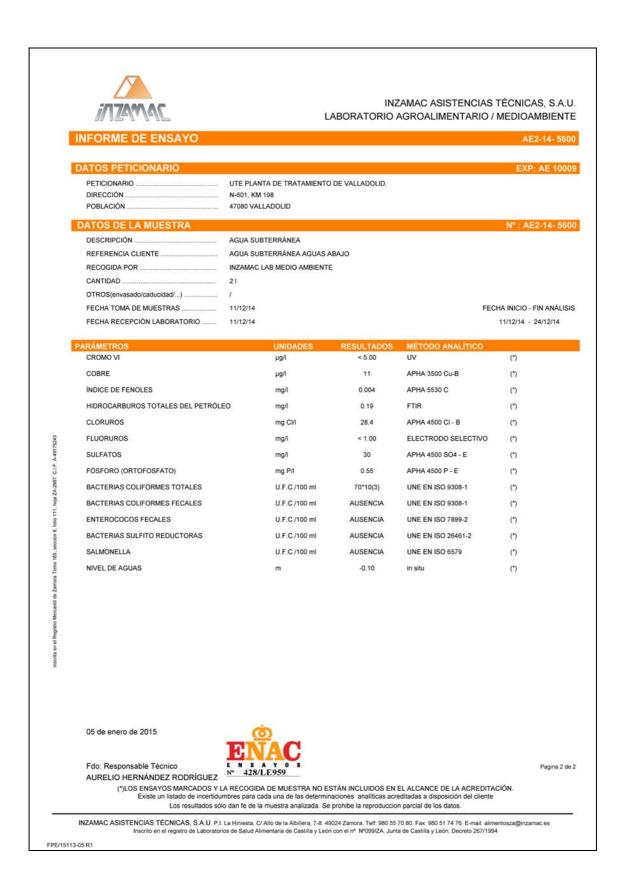



- Informe Medición Septiembre 2014: AE2-14-4121.




- Informe Medición Octubre 2014: AE2-14-4571.




- Informe Medición Noviembre 2014: AE2-14-5165.

- Informe Medición Diciembre 2014: AE2-14-5600.

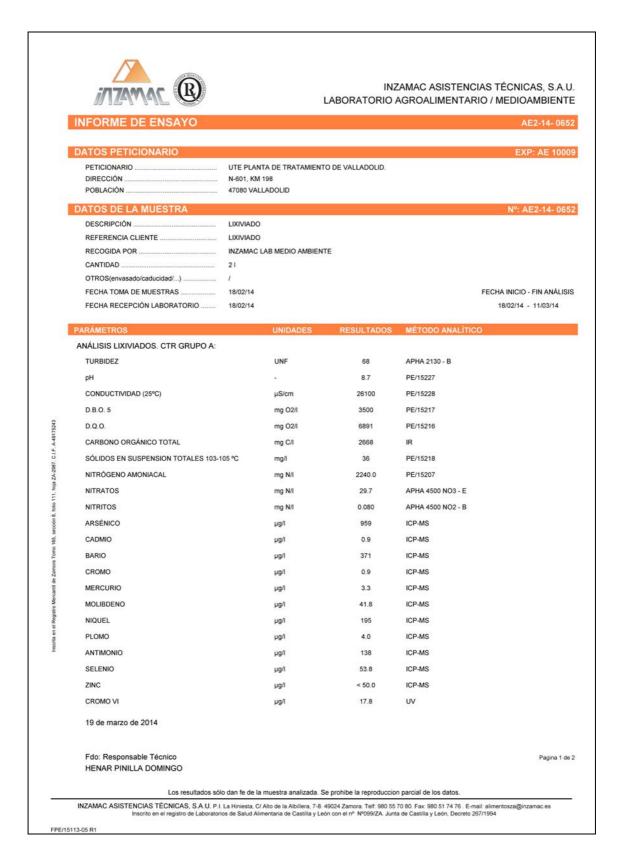
3.6.11 PVV11 – Lixiviados

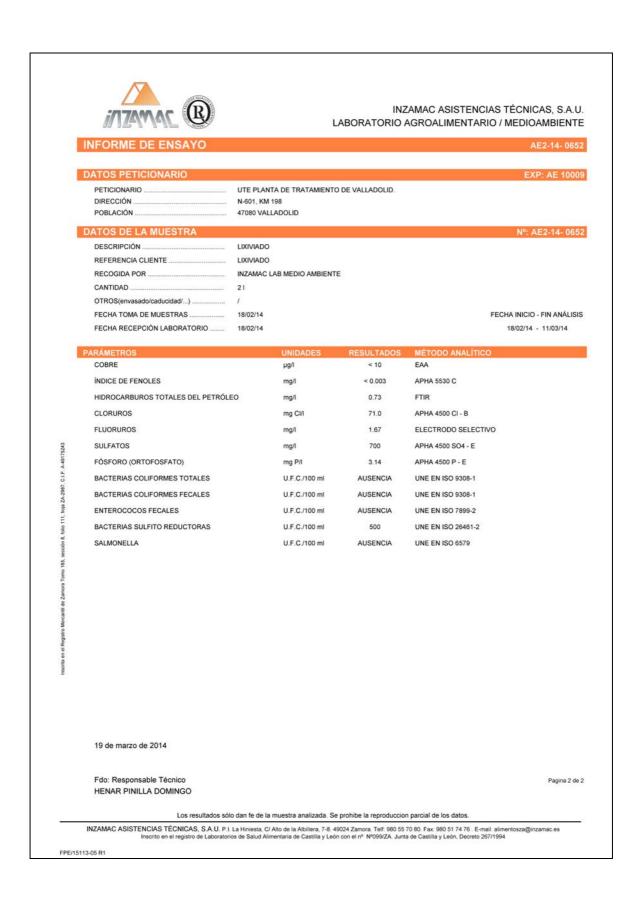
En este punto de vigilancia se realizan dos actuaciones:

- Control de almacenamiento: Se muestra de manera anual en tabla de control.
- Control Analítico: Control de la composición de los lixiviados. Los informes correspondientes con este punto de vigilancia han sido realizados por la empresa INZAMAC ASISTENCIAS TÉCNICAS, S.A.U.

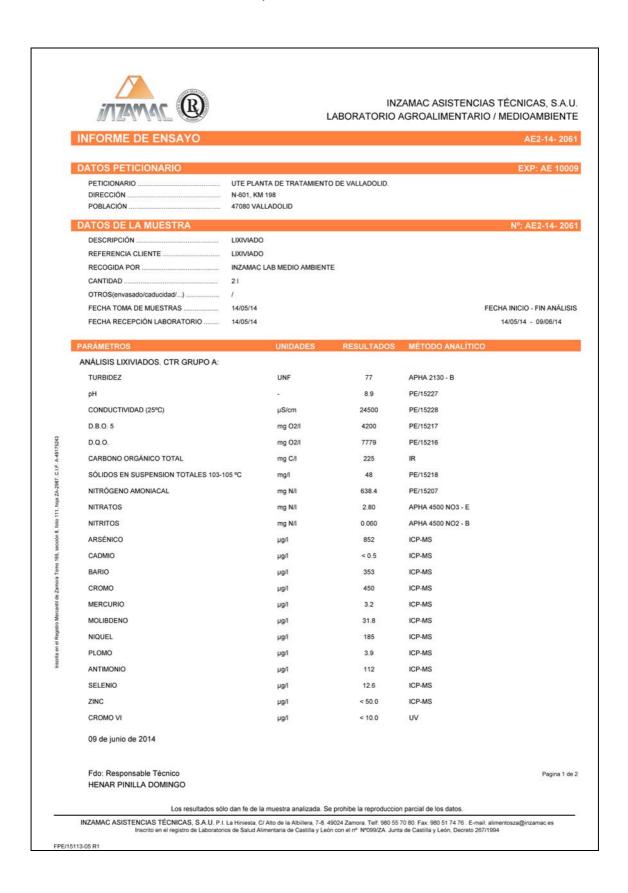
Las mediciones realizadas en este punto de vigilancia, se encuentran en los informes con referencias:

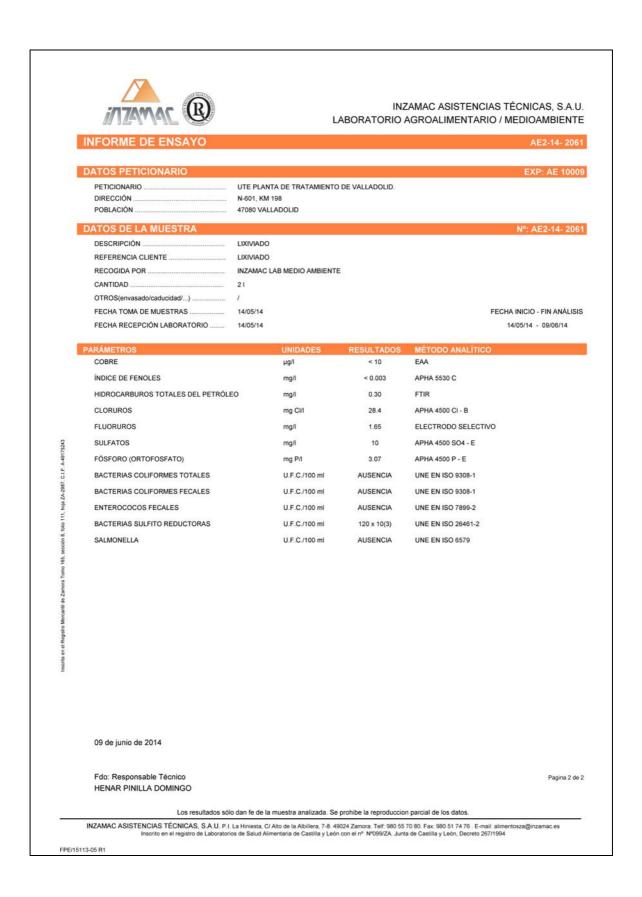
- Informe Medición Febrero 2014: AE2-14-0652.
- Informe Medición Mayo 2014: AE2-14-2061.
- Informe Medición Agosto 2014: AE2-14-3678.
- Informe Medición Noviembre 2014: AE2-14-5167.

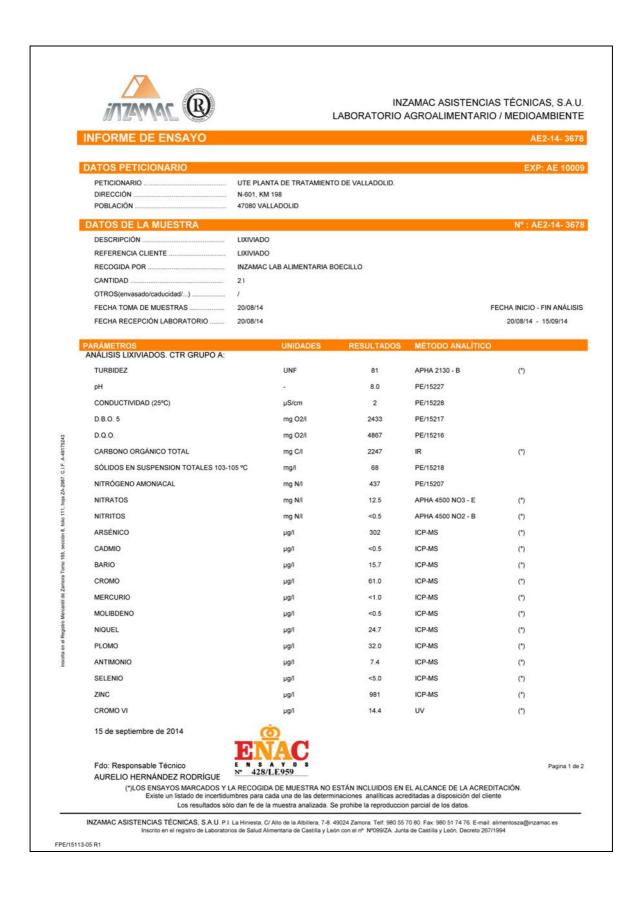

Los informes se muestran a continuación.

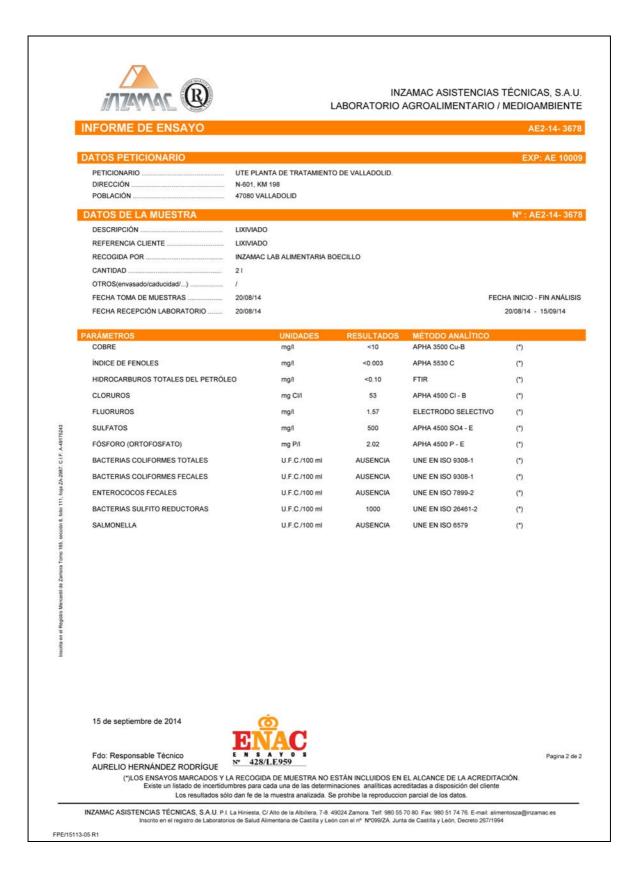

CONTROL DE ALMACENAMIENTO

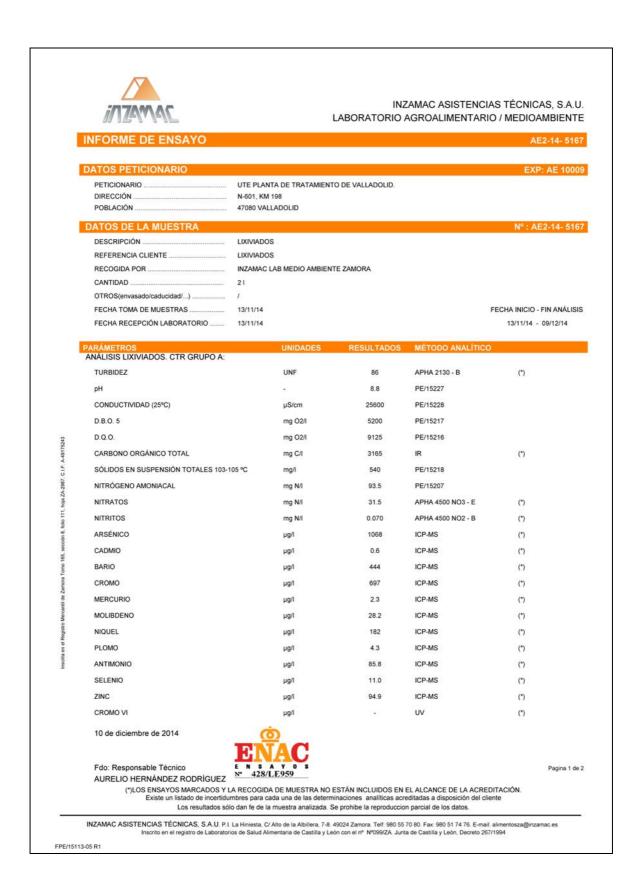
	Grado llenado	ARQUETA CONTROL 1	ARQUETA CONTROL 2		(WY DOC
		×	×	SECA	
febrero-14 2,6		×	×	SECA	
marzo-14 2,4		×	×	SECA	10000
abril-14 2,2		×	×	SECA	
mayo-14 2,0		×	×	SECA	Jan A
junio-14 2,2		×	×	SECA	
julio-14 2,4		×	×	SECA	
agosto-14 2,2		×	×	SECA	E AH
septiembre-14 2,4		×	×	SECA	Nooks
octubre-14 2,8		×	×	SECA	
noviembre-14 3,0		×	×	SECA	Spark
diciembre-14 2,8		×	×	SECA	

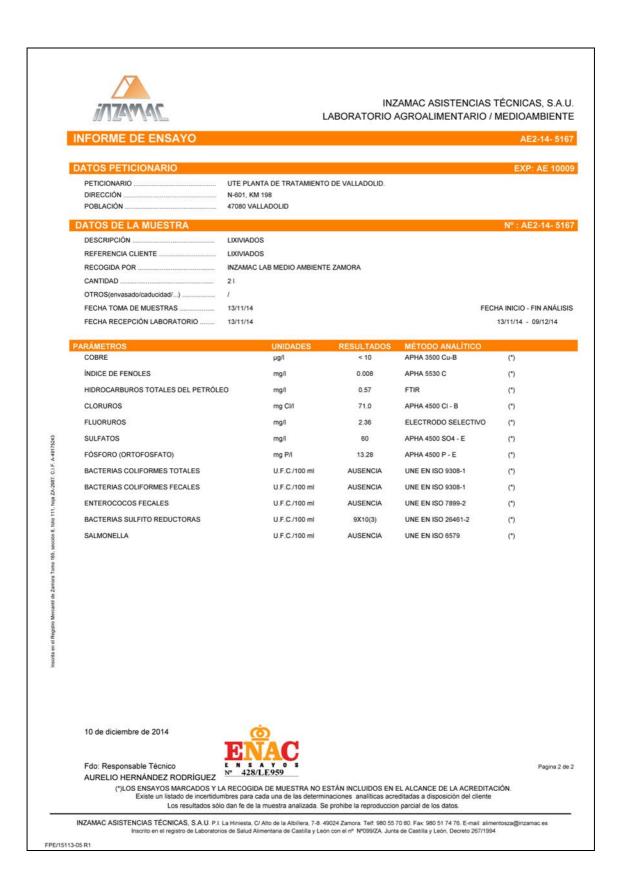

CONTROL ANALÍTICO


- Informe Medición Febrero 2014: AE2-14-0652.




- Informe Medición Mayo 2014: AE2-14-2061.




- Informe Medición Agosto 2014: AE2-14-3678.

- Informe Medición Noviembre 2014: AE2-14-5167.

3.6.12. PVV12 - Control Topográfico

El informe correspondiente con este punto de vigilancia ha sido realizado por la empresa GT&C Topoinca.

El informe consta de los siguientes apartados:

- Cubicación de vertidos realizados y superficie ocupada.
- Control de Estabilidad de taludes y vaso de vertido
- Control de Estabilidad de Balsas de Lixiviados

Los informes son mostrados a continuación.

ESTUDIO TOPOGRÁFICO VERTEDERO VALLADOLID

JULIO 2014

FOMENTO CONSTRUCCIONES Y CONTRATAS

- * PLANO TAQUIMÉTRICO E: 1/1.500 DEL CONJUNTO DEL VERTEDERO EN COORDENADAS UTM SISTEMA ETRS89.
- * CUBICACIÓN DE LOS VERTIDOS REALIZADOS Y SUPERFICIE OCUPADA.
- * CONTROL DE LA ESTABILIDAD DE LOS TALUDES Y VASO DEL VERTEDERO.

VALLADOLID, JULIO 2014

C/ Martín Lutero King, 3 - Bajo VALLADOLID 47013 CIF: B-47368915 . Tel: 983 / 45 60 81. Fax: 983 / 45 60 82 e-mail: topoinca@topoinca.es

INFORME - MEMORIA

1.- ASUNTO.

A petición de Fomento de Construcciones y Contratas se realiza el estudio topográfico del Vertedero de Valladolid considerando los siguientes puntos:

- * Plano taquimétrico E: 1/1.500 del conjunto del Vertedero en coordenadas UTM Sistema ETRS89.
- * Cubicación de los vertidos realizados y superficie ocupada.
- * Control de la estabilidad de los taludes y vaso del vertedero.

2.- EQUIPOS UTILIZADOS.

Para desarrollar los trabajos de campo utilizamos un GPS Leica 1200 bifrecuencia con doce canales para cada portadora, trabajando en tiempo real, recibiendo las correcciones de las antenas de referencia de ITACyL a través de Internet por telefonía móvil, asegurando con este método precisión centimétrica.

Los trabajos de campo se realizan por un Ingeniero Técnico en Topografía y un Auxiliar Topógrafo.

3.- TRABAJOS REALIZADOS.

* Plano taquimétrico del conjunto del Vertedero.

Con los equipos descritos anteriormente, se realiza el levantamiento taquimétrico del conjunto del Vertedero, incidiendo especialmente en la ubicación de las distintas bancadas que conforman el vaso de depósito de los vertidos. Se definen los taludes, midiendo pie y cabeza, y en las plataformas se define una rejilla de puntos de cota. Las cotas son Ortométricas y están referidas al modelo de Geoide calculado por el IGN "REDNAPO8".

En gabinete, se procesan los datos de campo con programas específicos de topografía SDR-Varin, que nos permite calcular el modelo digital del terreno, para confeccionar el plano taquimétrico adjunto, realizar el cálculo del volumen de vertidos y calcular la superficie ocupada.

C/ Martín Lutero King, 3 – Bajo VALLADOLID 47013 CIF: B-47368915 . Tel: 983 / 45 60 81. Fax: 983 / 45 60 82 e-mail: topoinca@topoinca.es

* Cubicación de los vertidos realizados y superficie ocupada.

Listado de Volúmenes por perfiles transversales.

P.K.	Sup. Desmonte	Sup. Terraplén	Vol. Desmonte	Vol. Terraplén
72.000	0.000	0.000		•
80.000	0.040	0.000	0.578	0.000
90.000	0.050	0.030	0.940	0.021
100.000	0.190	0.200	2.590	1.656
110.000	0.030	0.220	4.043	4.143
120.000	0.030	0.120	5.069	5.848
130.000	0.050	0.330	5.646	6.839
140.000	20.460	2.510	18.056	1707.092
150.000	92.250	7.030	746.948	1741.985
160.000	147.500	8.100	1328.513	1835.799
170.000	380.600	12.810	4295.820	1895.523
180.000	286.670	8.140	8097.061	2072.996
190.000	340.200	10.150	11367.946	2111.031
200.000	134.730	114.390	13746.972	2653.299
210.000	100.600	95.730	14745.577	3811.251
220.000	332.970	2.840	16491.879	4328.793
230.000	614.230	5.920	21952.883	4367.017
240.000	256.860	472.340	25391.555	7137.654
250.000	437.340	290.930	28818.751	11275.963
260.000	500.860	411.290	33635.255	14813.563
270.000	443.280	453.150	38399.760	19221.227
280.000	406.270	423.230	42615.739	23617.844
290.000	397.090	385,870	46609.811	27650.838
300.000	374.160	351.320	50518.089	31350.669
310.000	332.600	308.480	54102.630	34646.039
320.000	261.560	286.190	57113.373	37587.345
330.000	193.430	321.530	59286.020	40591.182
340.000	178.900	406.470	61242.281	44199.316
350.000	181.250	483.060	63024.306	48695.093
360.000	181.730	482.670	64837.373	53572.378
370.000	191.320	456.590	66717.126	58269.786
380.000	145.070	437.380	68490.425	62719.282
390.000	92.300	433.150	69619.572	67065.747
400.000	76.450	432.680	70469.756	71398.576
410.000	68.950	409.850	71184.987	75609.871
420.000	32.140	421.090	71714.115	79706.602
430.000	5.250	488.480	71861.573	84138.475
440.000	10.010	634.060	71951.683	89739.332
450.000	6.160	739.020	72041.010	96662.780
460.000	14.190	740.550	72122.557	104004.859
470.000	18.070	784.980	72294.686	111835.355
480.000	20.490	629.760	72488.017	118904.694
490.000	22.040	585.830	72697.151	124976.941
500.000	25.040	548.840	72927.220	130631.934
510.000	32.090	514.730	73204.590	135964.640
520.000	38.300	472.800	73568.279	140906.513
530.000	29.490	435.240	73920.870	145438.924
540.000	21.680	416.110	74202.892	149643.220
550.000	19.990	432.190	74399.366	153926.140
560.000	16.560	410.520	74600.505	158163.770

C/ Martín Lutero King, 3 - Bajo VALLADOLID 47013 CIF: B-47368915 . Tel: 983 / 45 60 81. Fax: 983 / 45 60 82 e-mail: topoinca@topoinca.es

The Land				
570.000	20.570	382.840	74789.201	162104.647
580.000	10.660	353.790	74961.032	165818.233
590.000	9.240	285.040	75053.534	169042.306
600.000	9.170	195.600	75151.677	171449.778
610.000	9.210	148.060	75237.423	173157.187
620.000	12.690	125.210	75383.086	174470.508
630.000	13.710	140.320	75523.649	175724.921
640.000	11.170	111.350	75649.011	176948.278
650.000	6.840	128.130	75744.863	178195.621
660.000	5.490	94.470	75796.311	179215.012
670.000	12.200	64.850	75884.050	180026.313
680.000	5.050	38.080	75956.891	180545.150
690.000	7.300	10.760	76033.378	180815.616
700.000	5.870	0.770	76090.579	180843.807
710.000	0.320	2.490	76124.547	180858.956
720.000	0.330	0.160	76125.328	180868.400
730.000	2.030	0.430	76129.142	180871.462
740.000	0.010	0.270	76136.755	180883.307
750.000	0.000	0.000	76136.926	180883.580
760.000	0.000	0.200	76136.926	180883.888
770.000	0.030	0.000	76144.462	180884.315
780.000	0.210	0.000	76145.401	180884.317
790.000	0.030	0.000	76148.941	180884.318
800.000	0.000	0.000	76149.321	180884.463
810.000	0.000	0.000	76149.321	180884.463
820.000	0.000	0.000	76149.321	180884.463
823.000	0.000	0.000	76149.321	180884.463

Se desmonta la zona Norte del vaso de vertidos con respecto al año anterior por lo que existe un volumen de desmonte de $76.149,23~m^3$ con respecto a la medición del año anterior 2.013. También se puede apreciar en los perfiles transversales calculados que existe dicho volumen de desmonte.

- Las Toneladas de RSU entre (Junio/2013) y (Junio/2014) han sido de 172.420 Tn.
- El volumen de vertidos desde <u>Junio de 2.013 hasta Julio de 2.014</u> es de **180.884,46 m**³, ocupando una superficie de **85.286 m**².
- Teniendo en cuenta que este año se han medido un mes más tarde dividiendo esta cantidad entre 12 meses tendremos **15.073,70 m³** y se las restamos al total tendremos un volumen de vertido entre el período de <u>Junio de 2013 a Junio de 2014</u> de **165.810,75 m³**.
- La densidad calculada con las consideraciones anteriores es de $172.420Tn/165.810,75~m^3 = 1,04~Tn/m^3$
- -Método de depósito: compactación alta densidad
- -Duración del depósito 16,6 años desde el inicio en abril de 1997
- -Volumen de RSU 3.076.061 m³
- -Volumen de ESC 2.185.088 m³
- -Volumen total.... 5.261149 m³

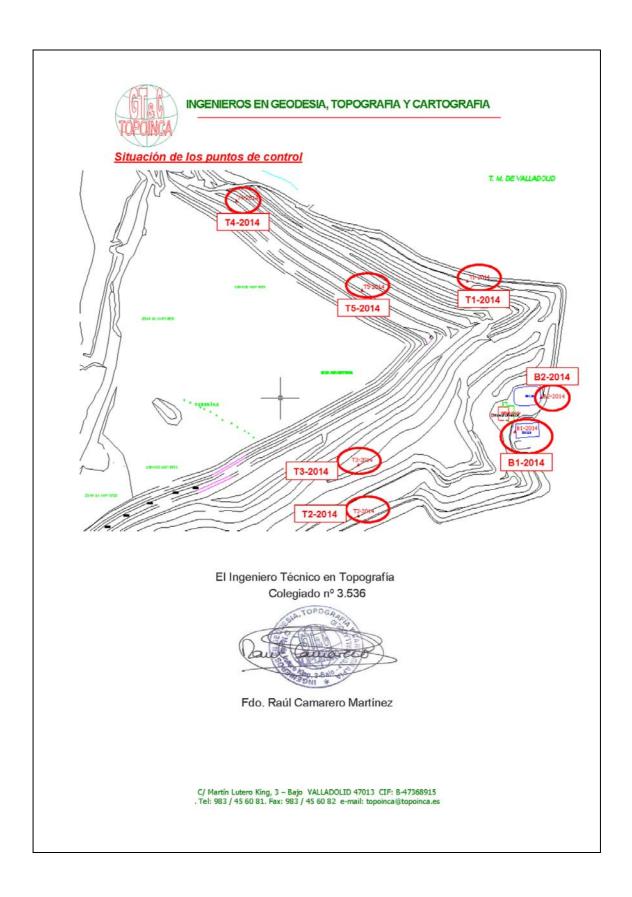
C/ Martín Lutero King, 3 - Bajo VALLADOLID 47013 CIF: B-47368915 . Tel: 983 / 45 60 81. Fax: 983 / 45 60 82 e-mail: topoinca@topoinca.es

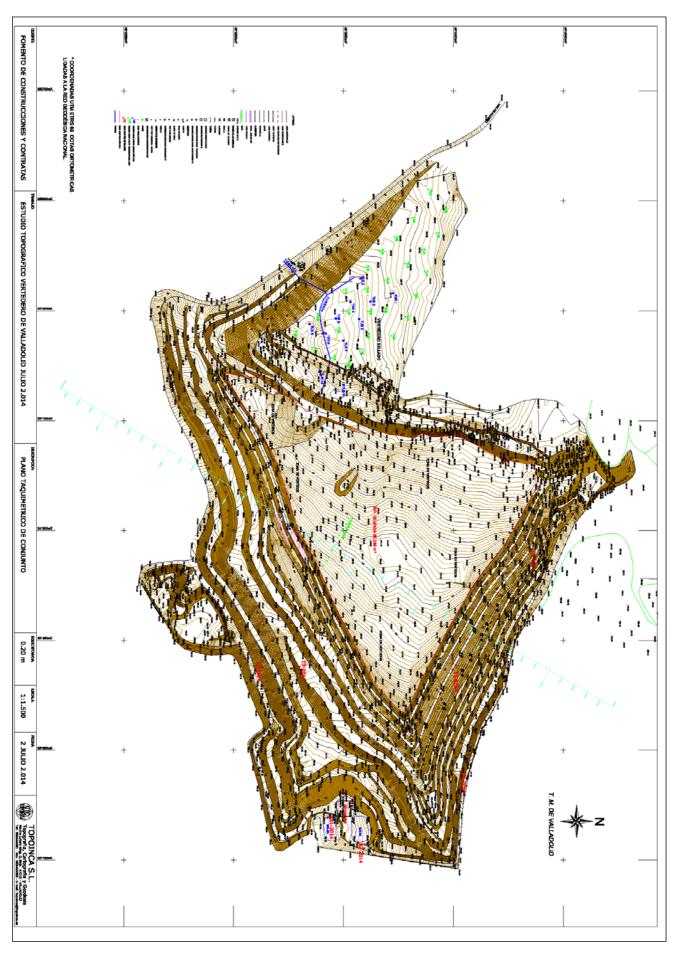
* Control de la estabilidad de los taludes y vaso del vertedero.

Realizado el levantamiento topográfico de la totalidad del vertedero, volvemos a realizar mediciones de los mojones-feno colocados en el año 2010, y medidos en el 2013 por última vez, resultando la siguiente tabla comparativa:

PUNTO	COOF	RDENADAS 20	13	COOF	RDENADAS 201	14	DI	FERENC	IAS	VECTOR
CONTROL	Х	Υ	z	Х	Υ	z	Х	Υ	z	DESPLAZAMIENTO
T1	351629.053	4615809.656	783.592	351629.058	4615809.661	783.671	0.005	0.005	0.079	0.079
T2	351485.771	4615528.127	768.768	351485.784	4615528.118	768.75	0.013	-0.009	-0.018	0.024
T3	351485.587	4615589.824	791.376	351485.597	4615589.79	791.269	0.010	-0.034	-0.107	0.113
T4	351325.449	4615905.938	807.792	351325.484	4615905.924	807.718	0.035	-0.014	-0.074	0.083
T5	351490.419	4615798.730	802.923	351490.502	4615798.823	802.733	0.083	0.093	-0.190	0.227

A la vista de los resultados y teniendo en cuenta la precisión de la medición efectuada con GPS es +/- 2 cms, podemos ver que los movimientos sufridos por los taludes son estables en posición, no así alguno de ellos en cota, pudiendo deberse a un asentamiento del terreno.


* Control de la estabilidad de las balsas de lixiviados.


De forma análoga al control de estabilidad realizado en los taludes, volvemos a realizar mediciones a los mojones-feno colocados en las balsas de lixiviados, obteniendo los siguientes resultados:

PUNTO	COOF	RDENADAS 20	13	COOF	RDENADAS 201	14	DIF	ERENCI	AS	VECTOR
CONTROL	х	Υ	z	х	Υ	z	Х	Υ	z	DESPLAZAMIENTO
B1	351691.296	4615629.127	757.613	351691.292	4615629.139	757.618	-0.004	0.012	0.005	0.014
B2	351725.790	4615670.457	760.273	351725.794	4615670.456	70.456 760.280	760.280 0.004	04 -0.001	0.007	0.008

A la vista de los resultados y teniendo en cuenta la precisión de la medición efectuada con GPS es +/- 2 cms, podemos ver que los movimientos sufridos por las balsas de lixiviados son mínimos, siendo estas estables.

C/ Martín Lutero King, 3 – Bajo VALLADOLID 47013 CIF: B-47368915 . Tel: 983 / 45 60 81. Fax: 983 / 45 60 82 e-mail: topoinca@topoinca.es

Informe Anual Condicionado Ambiental 2014

4. INFORME PRODUCCIÓN DE RESIDUOS PELIGROSOS.

En las tablas siguientes se muestran los datos de generación de residuos peligrosos de las instalaciones en el año 2014.

PLANTA DE TRATAMIENTO

CODIGO LER	DESCRIPCIÓN	30-abr-14	06-nov-14
15 02 02	Materiales absorbentes	54 Kg.	60 Kg.
16 01 07	Filtros de aceite	1 Kg.	1 Kg.
16 01 14	Liquido refrigerante	1 Kg.	1 Kg.
16 06 01	Baterías de Plomo	125 Kg.	70 Kg.
15 01 11	Envases Metálicos	1 Kg.	1 Kg.
15 01 10	Envases Plástico	1 Kg.	1 Kg.

La gestión que se realiza de los Residuos Peligrosos es la de Retirada por Gestor Autorizado. Todos han sido retirados por:

-Gestor: RECICLADORA DE BATERIAS RECIBAT, S.L.

-Nº Autorización: GR CL 3/96

-NIF: B-81247082

<u>INSTALACIONES VERTEDERO</u>

CODIGO LER	DESCRIPCIÓN	1-Abril 2014
13 02 05	Aceite usado	450 Kg

La gestión que se realiza del Aceite Usado es la de Retirada por Gestor Autorizado.

-Gestor: Gestión y Protección Ambiental S.L.

-Nº Autorización: G.R. CL 2/03.

-NIF: B-09284720.

CODIGO LER	DESCRIPCIÓN	10 Abril 201a
15 01 04	Envases contaminados	100 Kg.

La gestión que se realiza de los Envases Vacíos Contaminados es la devolución de los mismos a Repsol YPF Lubricantes y Especialidades.

5. INFORME PRODUCCIÓN DE RESIDUOS NO PELIGROSOS.

Los residuos no peligrosos generados por la Planta de Tratamiento, son:

CODIGO	DESCRIPCIÓN	CANTIDAD	Gestión	Nombre
LER	DESCRIPCION	(Kg.)	Final	Gestor
19.12.12	Residuos procedentes del tratamiento mecánico	95.658.540	Deposito Rechazos	VERTEDERO
19.05.01 y	Fracción no compostada de residuos urbanos y asimilados, y de	48.319.060	Danasita Basharas	VERTEDERO
19.05.02	procedencia animal o vegetal	46.313.000	Deposito Rechazos	VERTEDERO
19.12.01	Subproductos (Papel/cartón)	1.734.560	Recuperador	ALBA SERVICIOS VERDES S.L
19.12.02	Subproductos (Metales Férreos) (Hierro)	106.280	Recuperador	DANIGAL RECUPERACIONES
19.12.02	Subproductos (Metales Férreos) (Hierro)	1.188.220	Recuperador	FELIX MARTIN SUÑER, S.A.
19.12.02	Subproductos (Metales Férreos) (Hierro)	46.160	Recuperador	DAORJE MEDIOAMBIENTAL, S.A
19.12.02	Subproductos (Metales Férreos) (Férricos Chatarra)	282.640	Recuperador	ANTONIO BERRIO S.L.
19.12.02	Subproductos (Metales Férreos) (Férricos Chatarra)	10.820	Recuperador	LAJO YRODRIGUEZ, S.A.
19.12.02	Subproductos (Metales Férreos)(Férricos Aparatos Electrónicos)	70.860	Recuperador	CHATELAC S.L.
19.12.03	Subproductos (Metales No Férreos)	8.460	Recuperador	RECUPERACIONES PEREZ, S.L
19.12.03	Subproductos (Metales No Férreos)	7.540	Recuperador	DAORJE MEDIOAMBIENTAL, S.A
19.12.04	Subproductos (Plásticos y Caucho) (PEAD)	63.560	Recuperador	RECICLAJES FELMA S.A.
19.12.04	Subproductos (Plásticos y Caucho) (PEAD)	256.720	Recuperador	REPLACAL S.L.
19.12.04	Subproductos (Plásticos y Caucho) (PEBD)	314.180	Recuperador	RECICLAJES FELMA S.A.
19.12.04	Subproductos (Plásticos y Caucho) (Plastico No Envase)	8.980	Recuperador	RECICLAJES FELMA S.A.
19.12.04	Subproductos (Plásticos y Caucho) (Plastico No Envase)	4.520	Recuperador	TECNICAS EN RESIDUOS Y RECICLAJES URBANOS, S.A
19.12.04	Subproductos (Plásticos y Caucho) (Plastico No Envase)	11.260	Recuperador	CONTENEDORES CASTRO S.L.
19.12.04	Subproductos (Plásticos y Caucho)(PET)	53.360	Recuperador	CLEAR PET, S.L
19.12.04	Subproductos (Plásticos y Caucho)(PET)	228.580	Recuperador	PET COMPAÑIA PARA SU RECICLADO S.A:.
19.12.04	Subproductos (Plásticos y Caucho)(PET)	308.800	Recuperador	TECNICAS EN RESIDUOS Y RECICLAJES
15.12.04	Juppi ouucios (Flasticos y Caucilo)(PET)	300.000	Recuperation	URBANOS, S.A:.
19.12.04	Subproductos (Plásticos y Caucho)(BRIK)	509.300	Recuperador	STORA ENSO S.A.
19.12.04	Subproductos (Plásticos y Caucho)(P.MEZCLA)	209.460	Recuperador	LIGEPLAS S.L.
19.12.05	Subproductos (Vidrio)	245.720	Recuperador	SIG-ECOVIDRIO

En el depósito de rechazos también se gestiona los siguientes residuos, provenientes de particulares y empresas.

CODIGO LER	DESCRIPCIÓN	CANTIDAD (Kg.)
19.12.12	Residuos procedentes del tratamiento mecánico	31.206.280
19.08.02	Residuos de Desarenado	2.569.760

6. ENTRADAS Y SALIDAS DE MATERIAL TRATADO EN PLANTA DE TRATAMIENTO DE RESIDUOS DE VALLADOLID.

En las siguientes tablas se muestran a modo resumen las entradas y salidas que se han producido mensualmente, en la Planta de recuperación y Compostaje de Valladolid.

RESUMEN MENSUAL ENTRADAS PLANTA DE TRATAMIENTO AÑO 2014

						ENTRAD	AS						
PROCEDENCIA	EX	CMO. AYUN	TAMIENTO VA	ALLADOLID		MANCOMU	JNIDADES		P.A	RTICULARE	S		
MES	ORGANICO	RESTO	TODO 1	ENSERES	PODAS	TODO 1	ENVASES	ORGANICO	RESTO	ENSERES	PODAS	TODO 1	TOTAL
Enero	2.689.520	4.645.660	1.167.360	150.280	34.820	5.660.460	198.060	816.720	1.940	100.840	57.680	197.080	15.720.420
Febrero	2.330.180	4.072.400	923.580	133.180	40.720	4.859.200	151.340	756.720	2.300	76.380	11.220	114.880	13.472.100
Marzo	2.585.720	4.530.060	1.015.280	145.780	57.840	5.686.300	160.160	810.720	15.620	132.020	50.980	89.800	15.280.280
Abril	2.484.000	4.324.600	1.149.100	141.740	29.080	6.057.260	178.300	907.900	25.300	97.620	33.840	80.080	15.508.820
Mayo	2.614.280	4.566.980	1.192.300	145.760	27.500	6.229.680	163.780	794.080	63.480	118.000	20.560	106.940	16.043.340
Junio	2.531.880	4.463.720	1.142.940	158.900	30.900	6.375.220	186.940	764.360	8.900	155.700	21.240	99.460	15.940.160
Julio	2.464.840	4.265.700	1.141.020	203.980	14.640	7.142.380	198.080	1.092.200	360	160.920	15.320	116.040	16.815.480
Agosto	2.149.780	3.784.500	959.760	157.960	20.480	7.444.180	182.500	953.220	340	141.760	24.960	91.240	15.910.680
Septiembre	2.492.720	4.416.580	1.282.020	179.140	63.920	6.896.400	185.460	858.560	47.540	198.460	340	116.540	16.737.680
Octubre	2.756.540	4.592.080	1.206.400	163.480	106.680	6.561.160	204.540	998.240	17.120	147.100	29.440	120.120	16.902.900
Noviembre	2.553.800	4.458.900	1.120.020	153.520	60.720	5.730.640	174.180	900.900	9.140	119.160	9.040	70.820	15.360.840
Diciembre	2.647.640	4.527.420	1.102.580	229.860	14.360	6.016.060	187.460	906.700	7.020	112.520	7.540	65.280	15.824.440
TOTALES	30.300.900	52.648.600	13.402.360	1.963.580	501.660	74.658.940	2.170.800	10.560.320	199.060	1.560.480	282.160	1.268.280	189.517.140

RESUMEN MENSUAL SALIDAS PLANTA DE TRATAMIENTO Y FLUJO INTERNO AÑO 2014

					SALIDAS						
			SALIDA	S VERTEDER)			SALIDAS SUBPRO	ODUCTOS	FLUJO) INTERNO
MES	COMPACTADOR	VOLUMINOSOS	RECHAZOS	AFINO	RECHAZOS PARTI.	ENSERES TRITURADOS	TOTAL VERTEDERO	SUBPRODUCTOS	COMPOST	TUNELES	METANIZACION
Enero	7.669.780	102.880	638.060	3.901.240	121.320	180.420	12.613.700	469.200	30.740	5.897.789	641.766
Febrero	5.799.800	82.440	525.440	3.759.460	56.120	154.840	10.378.100	474.180	0	5.920.863	364.003
Marzo	6.793.600	85.040	574.680	3.611.740	65.760	200.260	11.331.080	403.500	230.860	6.419.310	487.205
Abril	7.411.180	104.020	558.040	2.595.660	54.260	190.160	10.913.320	288.580	2.236.040	6.262.594	495.045
Mayo	7.877.630	96.240	560.320	3.889.640	59.860	237.180	12.720.870	409.340	1.358.940	6.589.800	439.044
Junio	6.924.680	71.700	570.180	3.643.600	1.180	239.620	11.450.960	622.780	961.680	7.388.360	520.805
Julio	7.313.820	75.680	557.340	3.985.220	4.920	204.620	12.141.600	588.420	730.180	7.892.003	510.725
Agosto	6.899.940	76.500	487.760	3.569.700	45.280	172.680	11.251.860	376.920	620.040	7.401.566	601.446
Septiembre	7.492.250	72.780	595.920	4.513.660	15.420	210.000	12.900.030	356.140	566.500	7.484.132	600.326
Octubre	7.281.660	78.480	632.880	4.930.460	21.720	190.420	13.135.620	643.980	518.600	7.719.985	689.926
Noviembre	6.496.900	59.580	539.940	5.215.600	29.340	159.880	12.501.240	465.760	150.240	7.308.778	626.086
Diciembre	7.245.120	63.220	469.120	4.703.080	0	158.680	12.639.220	571.180	394.780	6.929.838	720.167
TOTALES	85.206.360	968.560	6.709.680	48.319.060	475.180	2.298.760	143.977.600	5.669.980	7.798.600	83.215.018	6.696.543

7. OPERACIONES DE MANTENIMIENTO EN EQUIPOS CON INCIDENCIA AMBIENTAL

A continuación se describen los trabajos de mantenimiento realizados en las instalaciones con incidencia ambiental durante el año 2014.

- Riego con camión cisterna de los accesos al depósito de rechazos durante los meses de verano. Realizado por personal interno Vertedero. Fecha: Verano de 2014.
- Limpieza del sistema de evacuación de lixiviados de la nave de compostaje, realizado por la empresa FCC S.A. y ayuda de personal interno en Julio de 2014.

8. APROVECHAMIENTO DEL BIOGAS DEL VERTEDERO

El vertedero en la actualidad, cuenta con dos fases, una en explotación y la otra sellada.

Vertedero en explotación

- En la parte de explotación en la actualidad, no hay aprovechamiento del gas, ya que las chimeneas existentes son para venteo y el residuo que es vertido es procedente de la planta de tratamiento, donde se le ha sometido a un proceso de retirada de la materia orgánica.

Vertedero sellado:

- En la parte sellada debido a la edad que tiene la basura no se produce suficiente cantidad de gas para su aprovechamiento energético, por lo que el gas producido es quemado en la antorcha.
- Se muestran datos de funcionamiento de antorcha del año 2014.

DATOS ANTORCHA

EFICACIA Y PLAN DE APROVECHAMIENTO DEL BIOGAS DEL VERTEDERO												
ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOSTO	SEPTIEMB	OCTUBRE	NOVIEMB	DICIEMB	2.014
96	72	120	80	96	96	72	72	120	120	79	96	1.119
96	72	120	80	96	96	72	72	120	120	79	96	1.119
15.840	11.880	19.800	13.200	15.840	15.840	11.880	11.880	19.800	19.800	13.035	15.840	184.635
15.840	11.880	19.800	13.200	15.840	15.840	11.880	11.880	19.800	19.800	13.035	15.840	184.635
	98 98 15.840	98 72 98 72 15.840 11.880	### ENERO FEBRERO MARZO 120 120 15.840 11.880 19.800	ENERO FEBRERO MARZO ABRIL 96 72 120 80 96 72 120 80 15.840 11.880 19.800 13.200	ENERO FEBRERO MARZO ABRIL MAYO 96 72 120 80 96 96 72 120 80 96 15.840 11.880 19.800 13.200 15.840	ENERO FEBRERO MARZO ABRIL MAYO JUNIO 96 72 120 80 96 96 96 72 120 80 96 96 15.840 11.880 19.800 13.200 15.840 15.840	ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO 96 72 120 80 96 96 72 96 72 120 80 96 96 72 15.840 11.880 19.800 13.200 15.840 15.840 11.880	ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO 98 72 120 80 96 96 72 72 98 72 120 80 96 96 72 72 15.840 11.880 19.800 13.200 15.840 15.840 11.880 11.880	ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIEMB 96 72 120 80 96 96 72 72 120 96 72 120 80 96 96 72 72 120 15.840 11.880 19.800 13.200 15.840 15.840 11.880 11.880 19.800	ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIEMB OCTUBRE 98 72 120 80 96 96 72 72 120 120 98 72 120 80 96 96 72 72 120 120 15.840 11.880 19.800 13.200 15.840 15.840 11.880 11.880 19.800 19.800	ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIEMB OCTUBRE NOVIEMB 96 72 120 80 96 96 72 72 120 120 79 96 72 120 80 96 96 72 72 120 120 79 15.840 11.880 19.800 13.200 15.840 15.840 11.880 19.800 19.800 13.035	ENERO FEBRERO MARZO ABRIL MAYO JUNIO JULIO AGOSTO SEPTIEMB OCTUBRE NOVIEMB DICIEMB 98 72 120 80 98 98 72 72 120 120 79 98 98 72 120 80 98 98 72 72 120 120 79 98 15.840 11.880 19.800 19.800 13.035 15.840

9. GESTION COMPOST COMERCIALIZADO

El compost esta considerado como enmienda orgánica dentro del Grupo 6 del Anexo I y en el Anexo V del R.D. 824/2005 de 8 de julio, sobre productos fertilizantes.

En la actualidad el compost producido en la Planta de Recuperación y compostaje de Valladolid, cumple los requisitos establecidos en el R.D. 824/2005 por lo que esta dado de alta en el registro de productos fertilizantes y afines de la Dirección General de Agricultura del Ministerio de Medio Ambiente, Medio Rural y Marino.

El nombre comercial del producto es COMPOST VALLADOLID con número de registro F0001867/2022

En el apartado 6 del presente informe se muestra las salidas mensuales de compost que se han realizado.

10. ACREDITACIÓN CUMPLIMIENTO ARTÍCULO 5.2 DEL R.D. 1481/2001.

Para la realización de esta justificación hay que tener en cuenta los siguientes aspectos:

- Población de hecho atendida en los dos años de referencia del estudio.
- Cantidad y caracterización de los Residuos Biodegradables destinados a vertedero en dichos años.

Los años de referencia son el año 1995 y el año 2014. Los datos referentes a población atendida han sido obtenidos del Instituto Nacional de Estadística.

En el año 1995 el vertedero de Valladolid recibía en sus instalaciones los RSU de la ciudad de Valladolid, no de toda la provincia como se reciben en la actualidad.

Por eso a la hora de realizar los cálculos hay que tener en cuenta el incremento de población que se ha dado en este periodo de estudio y el servicio prestado por la Planta de Tratamiento, ya que antes se atendía a la ciudad de Valladolid y ahora a toda la provincia.

	Población atendida
1995	319.805
2014	529.157

Los datos sobre la caracterización de los residuos que entraban en el vertedero en el año 1995, se muestran en la tabla siguiente.

Caracterizació	Caracterización Residuos Entrada Vertedero Año 1995				
M. Orgánica	162,5 Kg.	55,5 %			
Papel-Cartón	56,5 Kg.	19,3 %			
Vidrio	10,0 Kg.	3,4 %			
Férricos	7,0 Kg.	2,4 %			
Plástico Duro	12,0 Kg.	4,1 %			
Plástico Fino	15,5 Kg.	5,3 %			
Celulosas	5,0 Kg.	1,7 %			
Madera	5,0 Kg.	1,7 %			
Textil	19,5 Kg.	6,6 %			
TOTAL	2 93 Kg.	100 %			

De aquí sacamos que los RSU biodegradables fueron el 76,5%, correspondiente a la suma de Materia Orgánica, Papel, Cartón y Celulosas.

La cantidad de toneladas que entraron en el vertedero, procedentes del Ayuntamiento fueron 118.085 Toneladas.

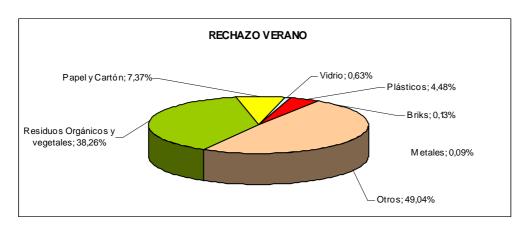
Por tanto:

$$R_{1995} = \frac{118085 \times 0,765}{319805} = 0,282 \frac{ToneladasRSUBio \deg radables}{Habi \tan te - Año}$$

Para el año 2014 se han tenido en cuenta las cantidades y las caracterizaciones de Rechazo de Planta y de Rechazo de Afino.

Las cantidades han sido las siguientes:

- Rechazo Planta Compactadores: 85.206,360Ton.
- Rechazo Afino: 48.319,060 Ton.


Las cantidades de rechazos y las caracterizaciones del Rechazo Fin de Línea (Rechazo Planta Compactadores) y Rechazo Afino, se encuentran dentro del Informe Anual presentado en Enero de 2015 a la atención del Órgano Competente en materia de Gestión de Residuos de la Consejería de Medio Ambiente de la Junta de Castilla y León.


Dicho informe esta presentado el día 30 de Enero de 2014 y registrado con número 20151670001208.

Dichas caracterizaciones son las siguientes:

CARACTERIZACIÓN RECHAZO FIN LINEA RSU.

	RECHAZO	S VERANO	RECHAZO	S INVIERNO
Residuos Orgánicos y vegetales	57,38	38,26%	64,32	42,09%
Papel y Cartón	11,05	7,37%	23,07	15,10%
Vidrio	0,94	0,63%	1,45	0,95%
Plásticos	6,72	4,48%	9,29	6,08%
Briks	0,2	0,13%	0,97	0,63%
Metales	0,14	0,09%	0,32	0,21%
Otros	73,55	49,04%	53,40	34,94%
	149,98		152,82	

Dando como resultado una media de Materia Biodegradable del 51,41%%. Dato obtenido como media de las suma de los Residuos Orgánicos y vegetales, y Papel y Cartón, en los periodos de Verano e Invierno.

La Media de la Materia Orgánica que hay en el Rechazo de Afino en el año 2014, se obtiene de las distintas caracterizaciones realizadas en el laboratorio que se encuentra en nuestras instalaciones.

CARACTERIZACIÓN RECHAZO AFINO.

RECHAZO AFINO	VERANO	INVIERNO
Humedad	24,35%	37,85%
Sólidos Totales	75,65%	62,15%
Materia Orgánica	38,95%	49,16%
Sólidos Volátiles	29,47%	30,55%

La media para los dos periodos da un resultado del 30,01 %

Por tanto el ratio resultante para el año 2014:

$$R_{2014} = \frac{(85.206, 36 \times 0, 5141) + (48.319, 06 \times 0, 3001)}{529.157} = 0,110 \frac{ToneladasRSUBio \deg radables}{Habi \tan te - A\tilde{n}o}$$

En conclusión se observa que la que la cantidad de RSU Biodegradable destinada a vertedero por habitante y año se ha visto reducida de 0,282 ton. a 0,110 ton. Lo que da como resultado una reducción del 60,69 %.

Por lo tanto queda acreditada la reducción del 50% para el año 2014, del artículo 5.2 del R.D. 1481/2001.

11. INFORME ESTADO IMPERMEABILIZACIÓN DEL VERTEDERO

El control de las posibles filtraciones del vertedero se realiza mediante los análisis del Punto de Vigilancia del Vertedero PVV10 - Piezómetro Aguas Abajo y del seguimiento de las arquetas de control del Punto de Vigilancia del Vertedero PVV11 - Lixiviados.

Las analíticas del Piezómetro Aguas Abajo y el seguimiento visual de presencia de agua en las arquetas, se realizan mensualmente, y están presentes dentro del PLAN DE VIGILANCIA AMBIENTAL DEL VERTEDERO y dentro de los INFORMES MENSUALES presentados.

La inspección visual de las arquetas de control es seca, y los valores obtenidos en los análisis son estables, no apreciándose que se haya producido filtración de ningún tipo.

12. COPIA EN FORMATO ELECTRONICO DEL INFORME.

Se incluye copia de este Informe, en formato electrónico.